Realtime
publishers

Intelligently Reducing
SharePoint Costs
through Storage
Optimization

Don Jones

sponsored by

A. AvePoint®

Unleashing the Power of SharePoint™

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones

Introduction to Realtime Publishers

by Don Jones, Series Editor

For several years now, Realtime has produced dozens and dozens of high-quality books
that just happen to be delivered in electronic format—at no cost to you, the reader. We've
made this unique publishing model work through the generous support and cooperation of
our sponsors, who agree to bear each book’s production expenses for the benefit of our
readers.

Although we’ve always offered our publications to you for free, don’t think for a moment
that quality is anything less than our top priority. My job is to make sure that our books are
as good as—and in most cases better than—any printed book that would cost you $40 or
more. Our electronic publishing model offers several advantages over printed books: You
receive chapters literally as fast as our authors produce them (hence the “realtime” aspect
of our model), and we can update chapters to reflect the latest changes in technology.

[want to point out that our books are by no means paid advertisements or white papers.
We're an independent publishing company, and an important aspect of my job is to make
sure that our authors are free to voice their expertise and opinions without reservation or
restriction. We maintain complete editorial control of our publications, and I'm proud that
we’ve produced so many quality books over the past years.

[want to extend an invitation to visit us at http://nexus.realtimepublishers.com, especially
if you've received this publication from a friend or colleague. We have a wide variety of

additional books on a range of topics, and you're sure to find something that’s of interest to
you—and it won'’t cost you a thing. We hope you’ll continue to come to Realtime for your
educational needs far into the future.

Until then, enjoy.

Don Jones

Realtime i

http://nexus.realtimepublishers.com/

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Introduction to Realtime PUDIIShErs...... s i
Chapter 1: The Problem with SharePoint StOrageoeeneneeneneeseseeseesesseesesssessesssesseessesnas 1
The SharePoint Vision: Everything, in One Placeoennesseesecseesesseeseseessesseessssssenees 1
The SharePoint Content Repository: It's Just @ Databasecccneneoreeneneenseeneeneeneesseeseessesseenens 3
Specific Problems with Specific Kinds of CONtENT.......cumnenennenenesnsnsnssssssessssssssssssssssssssssssens 5
Large CONTENT TEEINS ...cuieueeeenreeeesseseessesssesseessessesssessessessses s s s s s s s s bbb ses bR 5
Shared Folders and Media Files ... seeseinesseesessesssnns 6
Dormant or Archived CONEENT. ... sesssss s sssssessssssesssssesass 8
SharePoint Storage Technical DEeP DIVooereeneereeneeseesseesesseessesseessessessessssssessssssessssssessssses 10
HOW SQL Server StOreS Data... s ees st ssesssessssssssssessssessssessssssssssssssasssenssnes 10
HOW WINAOWS SEOTES DAtcucerieeereereereeeseieesseeessse s sssssssssessanes 11
SharePoint: All ADOUL the BLOBSeceseereeseesesseeseeeesseessesseessessssssessssssssssssssessssssessssssessssses 12
Why BLOBS Are Bad fOr Databases.......oereneenseneseeseesesssssesssssssssessssssessssssessssssssssssssssssssseans 13
Why We Put BLOBS into Shar€POintoeeirrseesssssessesssesssssssssssssssssssssssessssssseess 13
L0138 o) 010) 4 U= oL oo 14
| ITaTor= U () 4 B U0 LoD 14
FaN (=5 0 F= o) =T TSSO 14
Metadata- and Tagging-Enabled ... sssssssssssssssssssssssssesssesssssssesans 15
LT g2 Lot 25 4 - o] (<o PP 15
RV23 3 1o s BT 00) | (= FO OO TSP 15
=010 D= o BT O TSP O P TO ST OPEOTRPON 16
Indexed and Searchable........ e 16
Minimal Database IMPACL ... ssss s ssssssssssssssssssssssssssssssnes 16
Minimal WEFE IMPACE....irirereiectseeseeseessesseessssesssessssssssssssssssssssesssnes 16
D0 oN0aa T B = =T (o) O PSP 16
TranSPArENt t0 USET'S ..o sssssessesssssssssesssssssessesssssssessesssssssesssssssssssssssssssssessssssssanes 17
L0000 00 V0o T o 0 o T« P 17

Realtime i

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Chapter 2: Optimizing SharePoint Storage for Large Content Itemscocmnenenneessessenneennes 19
What IS “Large COMTENE?” ... eeecerreeeesseesesseessessesssesssessssssssesssesssessesssessssssssssessssssssssessssssessssssessesssesssees 19
Pros and Cons of Large Content in SharePoOint..........enceneescseeseeseesseeseeseessessesseessessesanes 20

EVerything in One PlaCe ... sssssssssssssssss s sssssssesssessssssssssans 20
Negative Database IMPACEoeeeereereererseessesseessessesseessessessesssessssssessessessssssssssssssssssssssssssssesssssnes 21
Goals for Large Content in Shar€POiNt ...t sessesesssessss s esssessesssessesssessssanes 22
Remove the Data from the Database.......cereneeersssssss s ssssssssesans 22
Keep the Metadata in the Database ... esessssessssssssssesesesssssssssssssnes 22
Keep the Content Searchable...... s sssssssssssnes 22
Keep the CONENT SECUTEA. ...t ssse s sss e sssss s ss s s ssanes 23
Keep the Content Versioned, Alerted, Workflowed, EtC.ccouneoneenenenneeneeseensesseesesseens 24
08 s T ST L 24
The Solution: Move the BLOBS ... eseeseseesseeesssssessessssssesssanees 25
EIBS ettt AR R R SRR AR bR 25
HOW [T WOTKS...ceeeeteeereesesessesssessessessessessss s s s s s ssssssenns 25

20 (0 F PP 26
000 o L] P 26

RBS ettt sttt s s s bR AR AR R SRR R AR R s 27
HOW [T WOTKS e eteeseteesessessesssesess s s s ssss s s s s ssenns 27

28 (0 F T 32
000 o L] PSP OTOPRTRTT T OTOO 33
Third-Party APPrOaChEs ... st snses 33
HOW [T WOTKS e eteeseteesessessesssesess s s s ssss s s s s ssenns 33
AdAEd FIEXIDIIITY oottt s e s s s s 33
000D 000 0 Vgl U o T8\ PP 35

Chapter 3: Optimizing SharePoint Storage for External or Legacy Content.........eeens 36
What [S “EXternal CONTENT?” ... eereereeeesseeseesseeseessesssessesssesssesssssssssssssssssesssssssssssssassssssasssssssssssssseens 36

Realtime iii

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

D U012 EY PP 36
Files iN Shared FOIATS ... sessse s sesssss s sssssssssesssssnes 37
MEAIA FILES oot seeee st ss s b s s s R e b e 37
Files from the ClOUd......eeceie ettt sss s ses s ss s ssss st nsanes 38
TOdaY: DAta CHA0S ..cereereeseissieesesssessessssss s sssssessssss s ssssssssssss s ssssssssssssssssssssnses 38
Traditional Approaches for Getting External Content into SharePoint........ccconerreneereenen. 40
INEEGIALION oottt s 40

0 0T 2 D PO 40
Business Connectivity Services or “Two-Way BDC" ... 41

1LY DT 2= 0) o PP 43
HOW 'S DOMIE w.oreeeeeetcesreteetsessse e sse s ssss st s bbb 43
Benefits of Migrating CONETENT........oreeerreereeeesereessessessesssesssessesssesssessesssessssssesssesssssssssssssssssesns 43
Downsides of Migrating CONTENT.......creuiereeeesreeeesseesessesssesssesssssssssessessssssssssessssssssssssssssssssseans 44
Goals for EXternal CONTENT. ... seeseessesssssssss s sssssss s sssssssssssss s sssssssssasesans 45
Keeping the Content EXTEINAL ...t sssssssssssssssessssssssssssssssnes 45
While Surfacing the Content in SharePoint....... s 45
And Making External Content a Full SharePoint CitiZenooeeneneesneeneeneesseeseeseeneenns 46
Creative Approaches for Getting External Content into SharePoint........ooneeneenseeseesnenne. 48
(000D A=) o Lo 000 1o =01 1) 30T 48
Special Considerations for Media Filesoeeeseeseeseesseesssssssssseessessesssssssssssaes 50
HOW DO YOU DO TE7 ottt ses bbb 51
COMING UP NEXL..oitrieriereesreuressessessssssssssssssessessessesssssssssssssssssssssessesssssssssssssssssssssessesssssssssssssssssssssssssssssssssnssnses 52
Chapter 4: Optimizing SharePoint Storage for Dormant and Archived Content.......cccccoorueune. 53
When Content GOES “DOTTNANT”eeereeneeeesseeseessessessesssessesssssssssssssssssesssssssssssssssssssssssesssssssssssens 53
Entire Sites Are NO LONger Neededoeenesersrssssssssssssssssssssesssssssssssessssssssssssesans 53
PrOJECES ENA ..ottt 54
Older Versions No Longer Actively Needed ... neneensesneesesseessesssesssssssessessesssesssssesnns 55

Realtime iv

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Content IS PhasSed OUL......cereerreerereessesseessessessessessssssssssssesssessesssessssssesssssssssssssssssesssssssssssssssanes 55
Business Concerns for DOrmant CONETENT ... eereeneesreeresseesseesesseessessesssessessesssssssessssssessesssessssaes 56
N LoD =T oL U 0 12221 (0) o UOO OO 56
Regulatory and Industry COMPlANCeoemeeeerneeseersissssssssssssssssssssssssssssssssessssssssssssesans 57
Retention and Archiving POLICIES. ... sesssssseesseessessesssessssssessssanes 58
The “Archive & Delete” APPIOACH ...ttt ses s s ssss s s sanees 58
TECRNIGUES ..ottt bbb 58
g 0T 1 016 (010 1P 60
LETOT=Y R (0] ol DX0) 04 =Y 0L 010) 4 U= 4 X PP 60
Reduce SharePoint Database UtiliZationcoeoeeereeneeneesesseesesseessessssssssssssssssssssessssssssseses 61
Keeping Dormant Content ACCESSIDIE ... sssssesssesans 61
Utilizing Existing Tiered Storage InfrastrucCture ... eneenreneenneeneeseesesseessesseessesssesees 61
Techniques and Concerns for SharePoint Content Lifecycle Management........cc.ccocveereennee. 61
“Dehydrating” and “Re-Hydrating” Datac.oeeeeerersesesssesssssssssssssssssssssssssssssssssssssses 63
BUSINESS RUIES ..ot ses s snnnes 65
Caution: Sticking with Official APIS ... sssesenas 66
Permissions 0N Archived Data ... erneeeeesssesseesssessessesssessssssesssssssssssssssssssssssssssssssssanes 67
More ShopPINg LISt IEEIMS ... ssss s sssssssesssessssssasssans 68
L0003 Uod 1013 0) o TP 69

Realtime v

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Copyright Statement

© 2010 Realtime Publishers. All rights reserved. This site contains materials that have
been created, developed, or commissioned by, and published with the permission of,
Realtime Publishers (the “Materials”) and this site and any such Materials are protected
by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers its web site
sponsors. In no event shall Realtime Publishers or its web site sponsors be held liable for
technical or editorial errors or omissions contained in the Materials, including without
limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

Realtime v

mailto:info@realtimepublishers.com

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones

Chapter 1: The Problem with SharePoint
Storage

We’ve been promised a world where SharePoint, in many ways, becomes our entire
intranet. At the very least, SharePoint is marketed as a means of centralizing all our shared
data and collaboration efforts. Conference speakers tell us that we should migrate our
shared folders into SharePoint, integrate SharePoint with back-end databases, and make
SharePoint the “dashboard” for all our users’ information needs.

In many regards, SharePoint can do all of that—but the price can be prohibitive. Why?
That’s what this chapter is all about: The problems that can arise when SharePoint becomes
the centerpiece of your information sharing and collaboration. That’s not to say we can’t
make SharePoint do the job. On the contrary, we can make SharePoint fulfill its marketing
hype and much more—if we use the right techniques to overcome some of its inherent
hurdles.

The SharePoint Vision: Everything, in One Place

Microsoft’s vision for SharePoint is for it to become the central, single location for all your
information-sharing needs. The problem with many of today’s environments is the sheer
amount of data that users need access to, and the fact that the data is scattered all over the
environment. For example, consider Figure 1.1. Users access information from shared
folders on file servers, from public folders in Exchange, from line-of-business application
databases, and much more. Simply teaching new users where all this information lives is
time consuming and challenging, and finding the right data at the right time can be
bewildering for even experienced users.

All these different information repositories have their own means of access, too. Shared
folders typically rely on Server Message Block (SMB) protocols, while Exchange public
folders may be accessible via the Internet Mail Access Protocol (IMAP), Outlook Web App
(OWA), Remote Procedure Calls (RPCs), and more. Line-of-business data—even basic
summary data that you might want to glance at now and again throughout the day—might
use entirely different protocols. Making sure users have access to everything from
everywhere—from the office to their homes, including computers and mobile devices—is
challenging and often impractical.

Realtime 1

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones

Explorer (S A % — [Glient App (=] =[S
L \\Server\Share\Folder -
———— L
Flie Berver Flla Server Exchangs Server Applcation Berver

Culabase Saiver

Figure 1.1: Users access information from too many places.

There are additional problem with this scattered access. For example, shared files living on
a file server aren’t version-controlled, making it all too easy for a user to accidentally delete
or change something they shouldn’t have. This mistake then forces an administrator to
resort to a backup. Newer versions of Windows support a Volume Shadow Copy Service
(VSS) feature that can help with the problem, but it’s a time-based snapshot. That means it
won’t capture every version of a changed file, so you can still end up losing valuable
information.

SharePoint proposes to solve this business problem by centralizing everything into a single
location. As Figure 1.2 shows, users can continue to employ whatever means they like to
access the data—including Microsoft Outlook—but the primary access is through a Web
browser. The benefit of this technique is that Web browsers exist on nearly every modern
computer and mobile device, and use a simple protocol that can be initiated from anywhere
in the world. Suddenly, all that shared data is centrally available through a single interface.

Realtime 2

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones

]

. Explorer S] E] ﬁ - Outloak . Browser L=]::) ﬁ
WServer\Share\Folder L hitp:/fintranet
= [[

EhamPaint Server

Figure 1.2: Centralizing everything in SharePoint.

Even business data from back-end databases can be integrated into SharePoint dashboards,
while remaining in their original databases. This makes SharePoint a single “portal” for
corporate data; in fact, the first version of SharePoint was called SharePoint Portal Server,
an early suggestion of this all-in-one vision.

SharePoint can not only centralize all this information but also make it version-controlled,
indexed, and searchable. Now, users can find data more easily, and the data is protected
against accidental change or deletion through a version-controlled repository.

That’s SharePoint’s promise, and it’s primarily delivered through the idea of having
everything contained in a single, central repository. That repository, unfortunately, is
exactly what introduces many of SharePoint’s most significant challenges.

The SharePoint Content Repository: It’s Just a Database

SharePoint’s repository—where all its content lives, is indexed, and is version-controlled—
isn’t some special data construct. It’s just a database—a SQL Server database, to be specific.
Modern versions of SharePoint are well-tuned to support content databases in the multi-
terabyte range, meaning SharePoint should be able to handle whatever you throw at it in
terms of storage. In fact, the main reason that companies split their SharePoint content
across multiple databases is to reduce things like backup and recovery time, not because
SharePoint can’t scale to handle their content storage needs.

Realtime 3

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

So let’s just be clear on one point: From a technical perspective, SharePoint can handle a lot
of data. Probably in the tens of terabytes. Database size limitations are not the problem
with the SharePoint content repository. But let’s step deeper inside for a moment, and look
at how that database works.

SQL Server stores data on disk in 8KB chunks called pages. When SQL Server needs to
change a single byte of data, it loads—at a minimum—=8KB of data off disk, makes the
change in memory, then writes that 8KB page back to disk. Normally, SQL Server has to
store an entire table row within a single page, meaning a single row of data can’t exceed
that 8KB limit (the actual number is slightly smaller, since each page has a small amount of
overhead for management data). However, SQL Server does allow a row of data to contain a
pointer to larger pieces of data, which can then be spread across multiple pages. Figure 1.3
illustrates this storage mechanism, with a single row of data on the first page, containing a
pointer to several sequential pages that contain a large string of data—perhaps a photo, a
Word document, or some other large piece of information.

N \ \

D: 12 L AGABEFTD ey B74BEB376 uaw 737E7C838 mar 8186E7899
984E5ABB B3727CB37 ERBOE9DSA AOCO4998
Content: 63647CB37 4TEB37647 9E9DBAGE 937151457
S8CT3728 E8C727C7 R9DICIEE E71637489
Date: C73627E76 DB3827E61 397B78487 8E9CTBCA
2010-05 38AG4CET BAB3T2772 388272691 9A93728A

Figure 1.3: Storing data on pages in SQL Server.

SQL Server refers to these large objects, which are stored as binary data, as binary large
objects (BLOBs)—surely one of the most charming acronyms in IT!

Note

We'll dive deeper into SQL Server’s storage mechanisms, and some of the
other subtle problems that BLOBs can create, later in this chapter.

It turns out, however, that SQL Server isn’t as amazing with BLOBs as it is with the smaller
pieces of data it normally deals with. Streaming a BLOB into the database, or reading it out
of the database, simply isn’t what SQL Server is best at. That’s not to suggest SQL Server’s
performance is horrible or anything, but even Microsoft has spent years trying to come up
with alternative ways of storing the information that are faster and more efficient. In SQL
Server 2008, for example, Microsoft added the FILESTREAM data type to SQL Server, which
allows BLOBs to be stored as simple files on the file system, with a pointer inside the
database. The idea is that Windows'’ file system excels at reading and writing large files, so
why not let it do that? Of course, with some of the data living outside the actual database,
tasks like replication, backup, and recovery can become more complicated, but the upside
is increased performance.

5 PRI
l{}’aa'_(_lll_llllfﬂ-_ 4

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

A deeper problem with large SharePoint databases—whether they’re full of BLOBs or
not—is that they simply take up a lot of room on disk, and data center-quality disk storage
still isn’t cheap. You might be able to buy a dozen 1TB desktop-class hard drives for $1800,
but just the cabinet for a 12-bay storage area network (SAN) can run $14,000—a fully-
populated 12TB SAN can run to $30,000. So, although SharePoint’s database might not
flinch at storing that much data, doing so can cost a lot. Plus, you're going to have to find a
way to back it all up, and be able to recover it quickly in the event of a disaster or failure.

A more subtle challenge with SharePoint storage is when you start enabling version
control. Every time someone modifies a SharePoint-based file, you're creating a new
version of that file—and the old version remains in the database. So the database can get
quite large, quite quickly. SharePoint also needs database storage to index the file so that it
can quickly locate files based on keyword searches by users. We want those features—it
would just be nice if we could find a way to have them take up a bit less space.

The idea, then, is to identify the specific problems associated with specific types of
“problem content,” and to find ways to address those problems while still meeting the
SharePoint vision of “everything in one place.” The general phrase for what we're trying to
do is SharePoint storage optimization, meaning we're seeking to optimize our use of
SharePoint storage to reduce our storage costs, while still maintaining a fully-functional
SharePoint infrastructure that offers all the benefits that SharePoint offers.

Specific Problems with Specific Kinds of Content

Let’s begin by examining specific types of problem content. By “problem,” I mean that these
forms of content can bloat the SharePoint database—perhaps not reducing performance,
but definitely increasing your storage costs and making tasks like backup and recovery
more complicated. We’re not going to take the “easy” route and simply say, “don’t store this
information in SharePoint;” our goal is to use SharePoint the way it’s meant to be used—
but to do so with a bit more control over our storage utilization.

Large Content Items

First and foremost are the file attachments stored in SharePoint, which I'll refer to as large
content items. Word documents, PowerPoint presentations, Excel spreadsheets, Photoshop
illustrations, Acrobat PDFs, you name it. Traditionally, we would just have dumped these
onto a file server and let people access them from there, but with a file server, we’re not
getting integrated enterprise-wide searching, nor are we getting version control—which
could certainly be beneficial for at least some of the files in your environment. SharePoint
offers those features, but these large items can take up a lot of room in the database,
increasing your storage costs. In addition, as I've already mentioned, SQL Server isn’t
necessarily at its best when working with these large content items; if there was a way to
move them outside the database—and still have them be “inside” SharePoint, of course—
then we could perhaps improve performance a bit as well as optimize our storage.

Realtime 5

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Note

I'll cover large content items in more detail, including storage optimization
techniques, in Chapter 2.

Shared Folders and Media Files

Obviously, the information in shared folders qualifies as “large content items,” so all the
caveats [described in the previous section still apply. Media files—audio and video files—
obviously fall under the same category, as video files in particular can be very large.

But they have some unique problems above and beyond their mere size. Simply getting this
content into SharePoint can present an enormous challenge: You need to locate the data,
copy it into the SharePoint database, create the necessary SharePoint items to provide
access to the data, and—perhaps most importantly—apply the appropriate permissions to
the content so that SharePoint’s access permissions reflect the original permissions of each
file. You'll be adding considerable size to your SharePoint database in the process, of
course, but you'll get the advantages of SharePoint’s features, including permissions
management, workflows, alerts, and versioning, along with indexing and search. Figure 1.4
illustrates the logical migration process.

There are a number of vendors who offer tools to assist with, and automate, this kind of
data migration. However, be aware that this kind of migration isn’t always the optimal way
to use SharePoint, at least in terms of storage optimization.

il

SharePoint 8QL Server

FTP Server

Clou

Storage

Figure 1.4: Migrating content into SharePoint.

Realtime 6

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Note

Chapter 3 will dive into this type of content in more detail, and suggest ways
in which you can obtain the benefits of having the content in SharePoint,
while optimizing your storage utilization.

Notice that the source repository for these migrations can come in a number of forms:
typical Windows file servers, of course, but also cloud-based storage or even FTP servers.
The basic idea is that any file, no matter where it’s located, can become more valuable and
collaborative once it’s inside SharePoint—assuming, of course, that you want to devote
enough storage to keeping it all in the repository, or that you have another way of
incorporating the information without actually migrating it into the database.

Offsite Content?

Why in the world would we want to include FTP- or cloud-based content in
our SharePoint infrastructure? Simple: There are a number of good business
reasons to include the “primary copy” of content in a cloud-based storage
system, on an FTP server, or elsewhere. Recoverability is one reason: Cloud-
based storage can offer better protection against deletion or failure.
Accessibility is another reason: We might have need for others to access the
data, and cloud- or FTP-based storage both offer easy ways for anyone in the
world to get at the information.

Sometimes data in a cloud- or FTP-based storage system might be someone
else’s data that our company has access to; being able to include that in
SharePoint would make it easier for our users to access, without requiring us
to actually “own” the data.

So there are definitely situations where we would want to bring in content
from a cloud-based storage system, or even an FTP server, without actually
“migrating” that data to live entirely within SharePoint. This may be a tricky
requirement, as most of SharePoint’s features typically require content to
“live” in the database, but by identifying this as a potential need, we can be on
the lookout for a solution, technology, or trick that might let us meet that
need.

Aside from the storage implications, there might seem to be one other significant downside
of moving content into SharePoint: retraining your users. For years, you've taught them to
used mapped drives, or possibly even UNC paths, to get to their shared files. Now, they
have to learn to find their files inside SharePoint document libraries. Newer versions of
Office can help alleviate the retraining pain because users can directly access documents
from those libraries, but for non-Office files—or if your users are used to older versions of
Office—there’s still some retraining to be done. There’s good news, though: Usually,
retrained users have an easier time working with documents that are in SharePoint, so
there’s definitely a benefit associated with that retraining investment.

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

[want to spend a few moments discussing the specific challenges associated with
streaming media—meaning audio and video. First, these files tend to be large, meaning
they’ll take up a lot of space in SQL Server and place a greater demand on SQL Server to
retrieve them from the database. They can also place burdens on SharePoint’s Web Front
End (WFE) servers, because those Web servers have to retrieve the content from the
database and stream it—in a continual, literal stream of data—to users. In fact, this kind of
media content is the one thing I often see companies excluding from SharePoint, simply out
of concern for what it will do to SharePoint’s performance. This book will have a specific
goal of addressing this kind of content, and identifying ways to include it in SharePoint
without creating a significant database or WFE impact.

Dormant or Archived Content

Perhaps one of the biggest drains on your SharePoint storage is old content that’s no longer
needed for day-to-day use or that hasn’t been used in a significant period of time but still
can’t be permanently deleted. Most organizations have a certain amount of data that
qualifies as “dormant” or “archival,” such is particularly the case for organizations that have
a legal or industry requirement to retain data for a certain period of time.

Even if all you have in the way of shared data is file servers, you probably know that the
majority of the files they store isn’t used very frequently. Think about it: If your SharePoint
servers only needed to contain the data that people actually accessed on a regular basis, the
database probably wouldn’t be all that large. The problem is that you also need to maintain
a way to access all that dormant and archival data—and that is often where SharePoint’s
biggest share of storage utilization comes from, especially when that dormant or archived
data consists of large content items like file attachments. It'd be great to pull that
information out of SharePoint, but then it would no longer be indexed and searchable, and
when someone did need to access it, they’d have no version control, no alerts, no workflow,
and so forth.

['ve seen organizations create tiered SharePoint libraries, like the one Figure 1.5 shows.
The idea is that “current” content lives in a “production” SharePoint server, with its own
database. Older or dormant content is moved—either manually or through some kind of
automated process—into an “archival” SharePoint installation, with its own database. The
archival database isn’t backed up as frequently, may live on older, slower computers, and in
general costs slightly less.

Realtime 8

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones

~l—0

Production BhanePoint SCL Server
\ - -
MW

Archival SharePoint Sl Server

Figure 1.5: Tiered SharePoint storage.

Properly done, you can even maintain a single set of search indexes so that users can find
older content. The problem is that older content becomes second-class, might be harder to
get to in terms of performance, and still takes up space in a SQL Server database. This type
of tiered storage isn’t necessarily ideal for every company, although it’s on the right track
toward a better solution.

Note

Chapter 4 will dive into specific techniques for better managing dormant and
archival SharePoint content.

There’s a bit more to this dormant/archival content picture, and that’s how you actually
identify dormant or archival content and move it out of SharePoint—while somehow
leaving it “in” SharePoint so that it’s still searchable and accessible. Let’s face it: If you
expect users, or even administrators, to manually identify “old” content and mark it for
archival in some fashion, it’s pretty much never going to happen. So you need to create
some kind of automated, non-manual process that can identify content that hasn’t been
accessed in a while, apply customizable business rules, and automatically migrate content
into some other storage tier—without “removing” it from SharePoint, of course.

As you'll see in Chapter 3, “dormant” content can consist of a lot more than the odd rarely-
used file. In fact, if you've really been using SharePoint, you might have entire sites that are
dormant—perhaps ones associated with a now-completed project—and you want to
dismantle them without making them permanently unavailable. You might want to treat
old versions of files as “dormant,” while leaving the current and most-recent versions in
your “production” SharePoint site—but you don’t want to permanently delete those old
versions. You might even be required to maintain older content, for regulatory reasons, but
you don’t see any reason to bog down your day-to-day SharePoint operations to do so.
There are lots of reasons to want to tier your SharePoint storage, and we’re going to need
to investigate some of the methods that will let you do so.

Realtime 9

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

SharePoint Storage Technical Deep Dive

['ve touched briefly on how SharePoint stores its data, but if we’re going to make any
headway in optimizing our SharePoint storage, we need to understand that storage
mechanism in much greater detail. Here's a deep dive on how SharePoint storage works.

How SQL Server Stores Data

SQL Server consists of a service, which opens database files on disk. You can think of the
database file as a kind of proprietary second-level storage system, meaning it is a way for
SQL Server to organize data in a manner that facilitates SQL Server’s job and performance
goals. The database itself sits on a disk drive, and access to the file is made through
Windows’ own file systems. Figure 1.6 outlines the high-level structure.

Windows File System

Figure 1.6: High-level SQL Server storage.

As I already described, SQL Server stores data in 8KB chunks called pages. That is strictly a
SQL Server data-management paradigm; the actual data is still written to the disk in the
form of disk blocks, which are usually smaller than 8KB. For example, if the drive was
formatted to use 1KB disk blocks, SQL Server would be writing eight of those blocks to the
file system each time it saved a page to the database. Figure 1.7 illustrates this deeper-level
look at the storage architecture.

Realtime 10

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones

Figure 1.7: Storing data in pages and disk blocks.

This form of storage can have ever-deeper impacts on SQL Server’s performance. As |
already explained, SQL Server generally requires that a single row of database data live
within a single 8KB page; smaller rows can share a page. Because SQL Server reads data in
8KB chunks, storing more rows per page means that SQL Server can read more data in a
single operation. Conversely, a data row occupying 4.1KB can result in a lot of wasted disk
throughput because SQL Server can only fit a single such page on an 8KB row but must
read and write that entire 8KB, even though only slightly more than half of the 8KB actually
consists of data.

How Windows Stores Data
Windows’ NTES stores data in disk blocks, or clusters, and their size is determined when
you format a new logical disk. The sizing theory goes something like this:

e Smaller disk blocks mean less wasted space but require more work for Windows to
read and write when large, multi-block files are involved.

e Larger disk blocks mean the potential for more wasted space but allow Windows to
read and write larger files in fewer discrete operations.

For a volume containing SQL Server databases, it’s almost ideal to use an 8KB cluster size,
as this aligns SQL Server’s own storage with the file system’s smallest unit of work. Some
experts recommend a larger cluster size of 64KB, meaning every file system-level disk read
will pick up eight SQL Server pages.

Realtime 11

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

The point is that the Windows file system is really good at reading large blocks of disk
space into memory, and at writing changes to large blocks of disk space. You have a lot of
flexibility to optimize the file system’s behavior in this regard, depending on the size of files
you’re working with. Really, the high-level lesson is that the file system is very good at
storing files. It does not necessarily need another layer added atop it if all you're doing is
storing large items like file attachments. Yes, if you're going to be storing relational data,
such as an actual database, a different means of organizing that data can vastly improve
performance—which is why SQL Server has its own database structure rather than just
storing data in tiny little files all over the disk. But that doesn’t mean an intermediate
storage layer like SQL Server is always going to offer the best performance.

SharePoint: All About the BLOBs

When SQL Server needs to store a large mass of data, such as a file attachment, it does so in
the form of a BLOB. BLOBs consist of a link, or pointer, within the actual row data. That link
or pointer then connects to one or more 8KB pages that store the actual BLOB data. So, in
SharePoint, suppose that a single document entry takes up a single 8KB page for the entry
itself. If a document entry includes a 50MB PowerPoint file attachment, the total entry will
consist of more than 6000 pages in the database.

SQL Server will never need to read a portion of those 6000 pages—when you retrieve the
PowerPoint file, you're going to retrieve all of it. That means those 6000 pages will only
ever be read sequentially, all at once. The problem is that they might not be stored
sequentially. SQL Server writes pages to the database beginning in the first available spot,
so those 6000 pages may require SQL Server to jump around a bit, finding free spaces for
all of them. The result is a fragmented database, meaning SQL Server will need to jump
around within the database file to re-assemble that PowerPoint attachment. Further, the
actual disk blocks storing those pages might not be contiguous (and that’s often the case
when a database grows beyond its initial size), so the operating system (OS) may have to
jump around quite a bit to piece together those 8KB pages. All that disk I/0, at both the
database and file system level, can slow SQL Server a bit. Although SQL Server is designed
to perform this kind of operation, when it has to do so for hundreds or thousands of users
at once, its performance definitely sees an impact.

The fact is that most of SharePoint’s storage will be given over to BLOBs. If you import 5TB
of files, you're going to be using 5TB of BLOB-style storage (potentially more, actually,
because having to store the data in 8KB chunks will usually result in some “wasted space”
at the end of each BLOB sequence). You'll also be adding the SharePoint data entries to
keep track of those files, but as a percentage of the total data, those entries are negligible. In
most SharePoint installations, upwards of 90% of your database size will be given over to
BLOBs, so figuring out how to optimize that storage can have a significant impact.

>altime 12

.__.
P
F aw

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Why BLOBs Are Bad for Databases

Keep in mind that SQL Server’s main design point is to read and write single pages of data,
or at the worst, a few pages of data, at once. Most SharePoint operations—updating a
document’s permissions, or changing its name—require that very few database pages be
modified, and SQL Server does a great job of it. When SQL Server has to start behaving like
a file system, however, it’s not working in its best “comfort zone,” and so you can start to
see performance differences.

In fact, when it comes to dealing with large, sequential data structures—Ilike file
attachments—SQL Server is essentially adding an unnecessary second layer to the
equation. Because those file attachment BLOBs aren’t the kind of structured, relational data
that SQL Server is deigned for, SQL Server really is taking on some of the attributes of a file
system—but it’s also sitting on top of a file system.

One trick, then, is to offload the BLOBs to the file system, which excels at moving huge
lumps of data from place to place. The file system is already involved in SQL Server’s BLOB
manipulation, so taking SQL Server “out of the stack” can help improve performance. In
fact, in the next chapter, I'll discuss some of the techniques Microsoft has created—
including External BLOB Storage and Remote BLOB Storage—to help offload BLOB storage
from SQL Server and into the file system or other storage mechanisms that are better
suited to mass-storage.

Why We Put BLOBs into SharePoint

Let’s consider every file in a SharePoint document library to consist of two main parts: The
file metadata and the file attachment itself. The metadata consists of things like keywords,
permissions, update dates and times, and so forth; the file itself is the actual file data stored
in a Word file, a PowerPoint file, or whatever.

The metadata provides most of SharePoint’s features, allowing it to coordinate workflows,
maintain version information, send alerts, and so forth. But SharePoint also needs access to
the actual file because its search indexing engine wants to open those files and scan them
for keywords. By doing so, it builds a search index, which is employed to help users quickly
locate files by using keywords. So although it is technically possible to separate the
metadata from the file itself, it isn’t desirable to do so unless that separation can be done in
a way that still provides SharePoint’s indexing engine access to the file.

Realtime 13

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

In fact, as you'll see in the second chapter, Microsoft’s official BLOB-offloading technologies
seek to do just that. They essentially wedge themselves into SQL Server’s brain so that
when SQL Server needs to store or retrieve a BLOB, the BLOB data goes elsewhere rather
than into the database itself. Because this “wedge” occurs within SQL Server, applications—
like SharePoint—don’t need to realize that it's happening. They “think” the BLOBs live in
the database, and SQL Server makes the BLOBs available as if they were in the database, so
SharePoint can continue working with all the files as if they were in the database—even
though they're not. But that’s not necessarily the only approach to reducing the size of the
SharePoint database and improving SharePoint’s database performance. In fact, one reason
BLOB offloading isn’t the “perfect solution” is because it still requires that content be
migrated into SharePoint to begin with—and that migration project might be one that you
want to avoid, if possible.

Goals for Content

Now that you're aware of the technical underpinnings of SharePoint’s storage, and of some
of the general directions that a solution might take, let’s lay out business goals for
SharePoint storage. Some of these might seem contradictory at this point, but that’s okay—
we're after the “perfect world” set of capabilities, and we’ll work out in the next few
chapters whether we can have them all.

Keep in mind that these goals apply, potentially, to all the shared and collaborative data in
your environment. Right now, it might not all be in SharePoint. Whether it is, isn’t, or
should or should not be is not the consideration right now. SharePoint is a means, not a
goal in and of itself. What we’re going to review now are our goals, and we'll determine
later whether SharePoint can be made to meet these goals.

Location-Unaware

As I wrote earlier, there are some advantages to keeping content elsewhere, especially off-
site. We want to be able to include content in SharePoint regardless of where the content is
located, and in some cases—as I'll outline in a bit—we may have good business reasons for
not migrating that content into the SharePoint database.

Alert-Enabled

We want all of our content to be alert-enabled. Alerts provide a way for users to “subscribe”
to an individual document and to be notified of any changes to it. This might allow a
document owner, for example, to be notified when someone else has made changes to a
document; it might allow users who rely on a document—such as current sales specials or
personnel policies—to be notified when changes have been made that they ought to review
and become familiar with.

This is something that SharePoint offers, but we need to figure out whether we can
practically and affordably include all of our content in SharePoint. Ideally, we do want all of
our content included in SharePoint in some way so that any piece of content can be
subscribed for alerts.

Realtime 14

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Metadata- and Tagging-Enabled

SharePoint allows for content to have predefined and custom metadata attached to it, along
with user-defined tags. Companies use these features to attach additional meaningful
keywords to content, and to classify content. For example, companies might use metadata
to identify a content item as “confidential” or to associate it with a particular project. Of
course, the content has to live in SharePoint’s database in order for this support to exist—
but we want these features for all of our content.

These feature in particular can make long-term content management easier, and can enable
users to locate content more easily and quickly by using common keywords that might not
appear within the content body (especially for media files like videos, which don’t have a
written “body” for keywords to appear within).

Workflow-Enabled

We don’t necessarily want every single document modified by everyone in the
environment, but we might be open to everyone suggesting changes. One way to achieve
that is to apply workflow to our documents. Workflow enables a user to modify a document
and submit it for approval, either to a group of reviewers or to a single reviewer. Before the
modified document becomes the official “current” version, the modifications would have to
be approved by some predetermined set of approvers.

SharePoint offers this functionality but only for content that resides within its database. In
other words, we again need to see whether it’s practical and affordable to include all of our
content inside SharePoint so that we can enable workflow on whatever pieces of content
we feel require it.

Version-Controlled

Another SharePoint feature is the ability to keep past versions of documents. Unlike a tape
backup or even Windows’ VSS, SharePoint doesn’t create a new version on a scheduled
basis. Instead, it creates a new version of a document whenever someone modifies the
previous version—ensuring that we have every version of the document that ever existed,
if desired. Users with appropriate permissions can access older versions of a document,
compare it with other versions, and even make an older version the current, “official”
version for other users to access.

In an ideal world, we’d have the option for versioning for every document in the entire
enterprise—but normally, SharePoint can only do this for documents that live within its
repository. So once again, we need to decide whether we can afford to include everything
within SharePoint.

Realtime 15

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Secured

Most of today’s data repositories support some kind of security. The Windows file system,
for example, has a very granular security system. What would be nice is if we could manage
access to all of our shared data in a single place. Obviously, SharePoint is a candidate to be
that place because it too supports a robust and granular security system. In fact, because its
security information lives in a database rather than being distributed across individual files
and folders, SharePoint is arguably a better way to manage storage, offering the potential
for easier security reporting, auditing, and so forth.

Again, however, we can only get those advantages if all of our content lives in the
SharePoint database—which may or may not be practical or affordable.

Indexed and Searchable

One of SharePoint’s biggest advantages is its ability to index the content in its database, and
make that content searchable for your users. It’s like having your own private Google or
Bing search engine that is accessible only to employees and that includes all of your
enterprise data. SharePoint’s indexing system is security-aware, meaning it won’t show
users search results for things they don’t have permission to access in the first place. Of
course, in order to be indexed, SharePoint needs all your content to move into the database.
Even if you've decided that you'll pay whatever storage costs are needed to make that
happen, there’s still the significant project of getting your data into that database.

Minimal Database Impact

Here’s where our business goals start to contradict each other. We want all of the above
capabilities—searching, security, alerts, workflow, and so on—but we want minimal
impact on the SQL Server databases that support SharePoint. We want those databases to
perform at maximum efficiency at all times, and we ideally want them to take up as little
space as possible—simply because “space” costs money to acquire and to protect and
maintain.

Minimal WFE Impact

[described earlier how streaming media files can sometimes have a negative impact on
SharePoint’s WFE, so we want to avoid that impact. We still want our media files “in”
SharePoint somehow—so that they can be indexed, searched, and managed just like any

other form of content—but we don’t want to do so in a way that will create a burden for the
WEFE.

Minimal Migration

We also want all of the above goals without having to spend time and money migrating data
into SharePoint. Although great migration tools exist, any migration project is a project. We
might decide that some degree of content migration is acceptable, but we don’t want
migration to be a hard-and-fast pre-requisite for gaining the above capabilities for all of our
content.

In other words, we want to be able to use all SharePoint’s features without necessarily
putting all of our content into SharePoint’s database. Seem contradictory? Sure—and it’s a
big part of what we’ll be examining in the next three chapters.

Realtime 16

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Transparent to Users

Based on the above, seemingly-conflicting goals, we’re likely going to be looking at some
kind of hybridized system that involves SharePoint, SQL Server, perhaps some kind of
BLOB offloading, and likely other techniques. With that possibility in mind, let's make one
last, formal business requirement of whatever solution we come up with: Our users can’t
know.

The goal here is to get all of our content into a centralized SharePoint infrastructure so that
our users can access all of their content in one consistent fashion. That’s SharePoint’s high-
level vision, and we have to maintain it. We can’t start throwing wrenches into the system
that require users to go here for some content, there for other content, and over there for
still more content; it all needs to be in one place. Whatever we're doing to archive old
content, for example, still has to make it look like that content still lives in SharePoint, even
if it really doesn’t. This is perhaps our ultimate business goal, and any solution that doesn’t
meet at least this goal is one that we will have to set aside as unsuitable.

Coming Up Next

Now that we’ve defined the major challenges and goals for SharePoint content, it’s time to
start looking at specific solutions. In the next chapter, I'll focus on large content items,
which often create the first and most difficult challenge that companies face with
SharePoint. We'll look at the advantages of including this content in SharePoint, and the
difficulties that arise when you do so. We'll also focus on the core techniques that can allow
large content to be integrated within SharePoint, while avoiding most of those difficulties.

So let’s quickly review what’s ahead: In Chapter 2, I'll look at the specific techniques we can
use to reduce the size of the SQL Server database while still leaving our content “in”
SharePoint. We'll dive into the details of the BLOB-offloading technologies I introduced in
this chapter, along with other approaches. We’ll get pretty technical because it’s the subtle
details in each approach that really make a difference.

Chapter 3 will be about optimizing SharePoint storage for external or legacy content. We'll
look at all the content living on file servers and other “old school” forms of storage as well
as content living in external stores like FTP servers or cloud-storage systems. I'll also focus
in on those streaming media files that can be so problematic for some SharePoint
environments. We’ll look at ways to include this content in SharePoint, while still trying to
meet our business goals for transparency, database impact, and so forth.

Realtime 17

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Finally, in Chapter 4, we’ll look at optimizing SharePoint storage for dormant and archived
content. This will be a tricky chapter because we have to not only find a way to keep our
SharePoint databases trim and efficient but we also concoct some means of automatically
identifying and moving dormant data into another storage tier—while of course keeping it
transparently accessible to SharePoint users. The industry has worked up some clever
techniques for this, and I'm excited to share some of them with you.

There’s sort of a theme for this book, and it’s this: Getting all of your content into SharePoint
without blowing your storage requirements through the roof. If you're already using
SharePoint, you'll find that this theme also helps you lower your existing SharePoint
storage requirements, hopefully without giving up any SharePoint features for any of that
content.

Realtime 18

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones

Chapter 2: Optimizing SharePoint Storage
for Large Content Items

One of the biggest uses of SharePoint is to store large content items. Unfortunately, those
are also one of the biggest contributors to massively-larger SQL Server databases, slower
database performance, and other problems. One of the most important topics in today’s
SharePoint world is optimizing SharePoint to store these large content items.

What Is “Large Content?”

Large content, in this context, refers primarily to the file attachments stored within
SharePoint. Microsoft refers to this kind of content as unstructured data, as opposed to the
more structured, relational data normally stored in a database.

As outlined in the previous chapter, SQL Server’s default means of storing this kind of data
is as a Binary Large Object (BLOB), usually stored in a column defined with the varbinary()
type. Physically, SQL Server keeps a pointer on the actual data page, and spreads the BLOB
data across several pages. Figure 2.1 illustrates how the row data page provides a pointer

to sequential BLOB pages.
NN O ST
o BLOB

Row
Data BLOE BLOB ELOB

Data

Figure 2.1: BLOB storage in a SQL Server database.

SharePoint can, of course, accommodate a lot of large content items. For example, if you
enable versioning, then every new version of a file will be a new large content item—and
the previous versions will remain in place. A typical file attachment might have less than
10KB of structured data associated with it—so much of your SharePoint database will be
occupied by these BLOBs. For example, if your average Word document is half a megabyte,
then you can expect about 95% of your database to be occupied by BLOBs, with just 5%
being the actual SharePoint data used to track and provide access to those BLOBs. |
examined a couple of SharePoint databases from consulting clients and found that number
to hold roughly true for all of them. Figure 2.2 illustrates the percentage—it’s pretty
impactful to see a visual like this and realize that most of your database space is given over
to BLOB data—essentially making SQL Server into a file server.

Realtime 19

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones

y \\._
| BLOBData |
| O\
Row Data
\ v (Structured)
™ r

Figure 2.2: Around 95% of many SharePoint databases is BLOB data.

Of course this won'’t always be the case—I have clients who have SharePoint sites that don’t
contain any file attachments. Of course, those sites’ databases are markedly smaller than
the sites that do contain a lot of file attachments.

Pros and Cons of Large Content in SharePoint

Obviously, the SharePoint team didn’t decide to load up SQL Server with BLOBs just for fun.
There are excellent reasons to have that data there—just as there are some significant
negative impacts. Understanding the pros and cons, however, is the key to finding a
solution that lets us get what we want, with as few of the negatives as possible.

Everything in One Place

The main benefit of having BLOBs in the SQL Server database is that SharePoint can access
the file data very easily. This is important for things like its workflow features, alerts,
security model, and most importantly for its ability to index the file contents for search
purposes. If SharePoint were to just dump all the data on a file server someplace, all of
those things would be a bit harder to manage, and might well require additional layers and
services to provide things like content indexing.

Having everything in the database also makes backup and recovery fairly straightforward:
Just back up the SQL Server database and you’re done. SQL Server features like database
mirroring, replication, log shipping, compression, and transparent encryption all come for
free when everything’s in the database, giving you a lot of flexibility in how you work with
your data, protect it, and so forth.

Keeping everything in the database helps with consistency as well. All the data is in one
place, so it’s always internally consistent. Delete a file entry in SharePoint and the file
data—the BLOB—goes away immediately. If SharePoint kept the file in the normal file
system, SharePoint would have to coordinate changes and deletions between the file
system and the database, creating an opportunity for inconsistency that you and your users
would probably not appreciate.

Realtime 20

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Negative Database Impact

The downside of having all of that BLOB data in the database is that, of course, it takes up a
lot of space. That can actually have some subtle impact on SQL Server performance. For
example, consider the data pages shown in Figure 2.3. Here, you can see that actual data
rows are interspersed by BLOB data. That makes it harder for SQL Server to read the actual
structured data because SQL Server has to skip over BLOB data pages in order to do so.
This isn’t a huge deal when you're talking about a page or two, but when reading a large
number of rows in a heavily-populated database, it has a cumulative negative impact on
performance.

Another issue is database fragmentation. In Figure 2.3, you can see that one of the large
items has been deleted, leaving a big empty space in the database. SQL Server may not
immediately re-use that space, so you’ll wind up with wasted disk space—a database file
that’s physically larger than it needs to be. That results in the need for more frequent
maintenance.

) TN N
Row Row

Data Data B

Figure 2.3: Deleting BLOB data can result in a lot of wasted space.

Worse, when SQL Server does start re-using that space, it'll lead directly to data
fragmentation. As Figure 2.4 shows, SQL Server is now storing data pages out of order,
meaning it'll have to hop back and forth within the database files to retrieve data rows.
Pretty ugly, right? Again, not a huge deal on a piece-by-piece basis, but it does have a
cumulative negative performance impact in a large, busy database.

Ny N | Ny N Ny N 3

Row 1 BLOB Row 3 Row 4 BLOB Row 2 BLOB

\&

Figure 2.4: Fragmented databases require more reading effort.

Realtime 21

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Goals for Large Content in SharePoint

Optimizing SharePoint storage is, in many cases, led by an effort to get the large content
items out of SharePoint. When we do that, however, we need to do so with an eye toward
retaining all of SharePoint’s features. We don’t want to just shrink the database for the sake
of doing so if at the same time we’re losing access to features like security, workflow, alerts,
indexing, and so on.

Remove the Data from the Database

So the primary goal is to remove just the BLOB data from the database. That leaves SQL
Server with a cleaner, leaner database consisting entirely of data rows. Problems like
empty space and fragmentation can still occur, of course, but they’ll be much less severe,
meaning you’ll have to perform maintenance on the database less frequently.

Backups will not necessarily be faster, as you'll still want to back up the BLOB data,
wherever it winds up living. In fact, one risk is that you’ll have to come up with new backup
routines, depending on how you do offload the BLOBs because your offloading technique
won’t necessarily integrate with SQL Server’s native backup scheme.

Third-Party Backup Tools

Some third-party backup tools rely entirely on SQL Server to deliver the data
to back up. If your offloading scheme takes the BLOB data away from SQL
Server, then SQL Server won’t know about it—and won’t be able to deliver it
to the backup tool.

Keep the Metadata in the Database

We don’t want to pull all of the content out of the database, though. The metadata needs to
stay—that’s information like who owns the file, who has permissions to the file, what
keywords are associated with the file, and so forth. SharePoint needs that information to
manage the file itself, and having that structured data in the database is the best way for
SharePoint to use it. The metadata, as I wrote, doesn’t take up much space, and it’s really
what the database is for.

Keep the Content Searchable

We also want to keep the content searchable, meaning SharePoint has to be able to access
the BLOB contents in some fashion. As you'll see in the upcoming sections, that means
either SharePoint needs to be able to find the file on its own, or SharePoint needs to be able
to transparently access the BLOB data through SQL Server—even if SQL Server isn’t
physically storing the BLOB data. Figure 2.5 shows the three ways this can work: storing
the data in SQL Server itself (the middle path), using a SQL Server-side BLOB offloading
mechanism (shown on the left), or using some SharePoint-based BLOB redirection (on the
right).

Realtime 22

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
]

Figure 2.5 Keeping BLOB content searchable.

Note

As a convention in this chapter, green arrows will represent the flow of
structured data, while blue represents the flow of unstructured BLOB data. A
green/blue arrow will represent either type of data.

Any of these techniques will ensure that SharePoint still has access to the BLOB data so that
SharePoint can crawl that data for search purposes.

Keep the Content Secured

We also want the content to remain secured using SharePoint’s security system. That
system is complex enough without layering some other security mechanism on top of it, so
the BLOB data needs to be stored in a way that prevents access to it except through
SharePoint, or in some other way that respects SharePoint’s priority in controlling access
to the file. What we want to avoid is a situation like that shown in Figure 2.6 where the
BLOB data lives elsewhere, such as on a shared folder, and can be accessed directly—
effectively bypassing SharePoint.

Realtime 23

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
___|

Figure 2.6: You don’t want to be able to bypass SharePoint’s security.

Simply storing BLOB data on a file server is not inherently a bad thing; what matters is how
the data is secured on that file server. You simply want to ensure that the data can’t be
accessed without SharePoint. Or, if it can be accessed without SharePoint, that any such
access can be synchronized back to SharePoint—so that SharePoint remains nominally in
control of that data.

Keep the Content Versioned, Alerted, Workflowed, Etc.

Finally, we need to ensure that all of SharePoint’s other features—versioning, alerting,
workflow, and so on—continue to operate on the data that we’ve offloaded. These features
are the main reason for using SharePoint, after all, so if we lose these features, we’ve sort of
made SharePoint useless. If we can’t offload the data and retain these features, we probably
wouldn’t want to offload the data at all.

Extra Features

We might want to add features on top of what SharePoint and SQL Server currently offer.
For example, we might want to direct different categories of BLOB data to different storage
locations—high-risk data, for example, might live on redundant storage, while low-risk
data (like the week’s cafeteria menu) might live on less-expensive storage. Not every
company will want or need that option, but if you do need it, it's something to keep in mind
as you explore your options.

Realtime 24

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

We might also want to implement some kind of tiered storage, so that older, less-used data
can be moved to less-expensive storage but still remain generally accessible. We might
need to observe data-retention policies, too, and it’s possible an “outsourced” storage
mechanism can address that. This is actually a bigger topic than just offloading BLOB data,
and I'll spend all of Chapter 4 exploring it.

The Solution: Move the BLOBs

Ultimately, what we want to do is get the BLOBs out of the SQL Server database. That'll
reduce the size of the database, which will help improve its performance. Of course, we
need to do so in a way that still keeps the content entirely visible to SharePoint so that all of
its features—alerts, workflow, versioning, metadata, security, and so forth—still work for
us. There are two basic approaches to BLOB offloading: External BLOB Storage (EBS) and
Remote BLOB Storage (RBS).

EBS

EBS was introduced with the previous version of SharePoint. It's a SharePoint-specific
feature; it's not generic to SQL Server. Essentially, EBS was the SharePoint product team’s
way of addressing the BLOB problem without specific help from the SQL Server team.

By the way, you should know that EBS is deprecated in SharePoint 2010, meaning
Microsoft doesn’t plan to pursue the technology. Instead, they’re pushing for RBS, which I'll
discuss next. However, it’s still useful to understand what EBS is and how it works.

How It Works

EBS basically provides a secondary storage mechanism within SharePoint: You still use SQL
Server to store structured data, but those unstructured large items are directed to a
different storage mechanism. A Component Object Model (COM) interface coordinates the
two. EBS is an extensibility point; both Microsoft and third parties can supply you with EBS
providers, and the provider makes the connection between SharePoint’s EBS layer (that
COM interface) and the actual external storage mechanism. Figure 2.7 illustrates how EBS
is built.

Realtime 25

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
]

= =

S0L Berver ge Berver
Figure 2.7: SharePoint EBS.

As you can see, structured data is still stored in SQL Server in the normal fashion; BLOB
data is redirected at the SharePoint source through the EBS interface.

Pros

Obviously, the “pro” is that EBS gets BLOB content out of the SQL Server database, reducing
its size and helping to improve its performance. EBS can work with any version of SQL
Server supported by SharePoint, so you don’t need to be on the latest versions of
everything in order to use it.

Cons

EBS isn’t the most sophisticated technology. For example, it doesn’t automatically
overwrite old BLOBs. If you update a file attachment, EBS creates a new store item, and
redirects all of the structured SharePoint data—metadata and the like—toward the new
item. Whoever wrote the EBS provider is responsible for cleaning up the now-orphaned
“old” data item. In practice, Microsoft says most EBS providers will put that off until some
scheduled “garbage collection” time, when orphaned BLOB data will be cleaned up.

EBS doesn’t integrate with SQL Server directly, meaning SQL Server’s internal
backup/recovery mechanisms, log shipping, replication, and so forth are unaware that
BLOB offloading is happening. That adds a layer of complexity to these operations.

Realtime 26

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

EBS was always intended as a kind of stopgap solution; even when introducing it, the
SharePoint team knew that something better would be on the way—and they did not
design EBS to migrate to that better way (which turns out to be RBS, which I'll cover next).
That said, some third parties can help migrate from EBS to RBS, and many third-party EBS
providers have RBS equivalents, so you can often stay with the same storage vendor.

If you add EBS to an existing SharePoint installation, it won’t convert existing BLOBs over
to the new EBS storage; you'll have to do that manually—for example, by creating a new
SharePoint site that uses EBS, then restoring your existing SharePoint data to that new site.
Not exactly painless; some third parties may offer tools to help automate the process and
make it less painful.

RBS

This is a technology implemented entirely by SQL Server (2008 and later); SharePoint has
no clue thatit’s there or working, nor would any other application. You don’t configure
SharePoint at all—you simply enable this in SQL Server. Applications can be made RBS-
aware, though (SharePoint is one such application), and those applications can make even
more efficient use of RBS.

How It Works

RBS is designed as an extensible mechanism. To use it, you need an RBS provider, which is
what actually handles dealing with the BLOBs on behalf of SQL Server. Microsoft ships a
default provider, the FILESTREAM provider, that utilizes the new FILESTREAM data type in
SQL Server’s 2008 R2 Feature Pack.

Essentially, the FILESTREAM data type is something you assign to a column in a table. That
is, instead of declaring the column as a varbinary() type, you add the FILESTREAM
attribute to the varbinary() column. SQL Server then automatically writes the BLOB data to
the file system rather than into the database. You still use SQL Server to add and retrieve
BLOB data; all that’s changed is where SQL Server physically stores it. Using a simple
FILESTREAM column doesn’t change the way you do backup and recovery, in fact; SQL
Server “knows” about FILESTREAM columns and integrates them into the backup
processes. They even work within SQL Server’s security model and are fully supported by
transactions. Figure 2.8 shows how it works: Essentially, the FILESTREAM type tells SQL
Server to split out the BLOB data into normal files on the file system.

Realtime 27

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
]

SQL Server
Figure 2.8: How the FILESTREAM type works.

Developers can choose to use a different technique to access BLOB data, which involves
using Win32 streaming application programming interfaces (APIs), essentially meaning
they can access the externally-stored files directly through a shared folder—taking some of
the burden off SQL Server and instead using the Windows file system—which is really,
really good at handling files. That does require a programming change in the application,
but it can improve performance pretty significantly. Figure 2.9 shows how this works: The
application, in this case, needs to do a little bit of extra work because it needs to access two
data stores in order to deal with BLOBs. It isn’t a massive undertaking from a programming
perspective, but it isn’t as transparent as just letting SQL Server do the work. However, SQL
Server isn’t a file system, so the extra programming work is generally rewarded by
improved application performance. SharePoint doesn’t necessarily use this approach;
instead, you'll typically see it using RBS—which itself can use FILESTREAM.

Realtime 28

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
___|

SOL Server
Figure 2.9: FILESTREAM-aware applications.

The trick with the default FILESTREAM implementation is that it can only store data on the
local disks available to the SQL Server computer. Some SQL Server features—such as
transparent encryption—won’t work for FILESTREAM data. Tables containing
FILESTREAM data can’t be used in database snapshots or in database mirroring (although
log shipping is supported).

As I said, SharePoint doesn’t necessarily use FILESTREAM types directly. The next level up
is the RBS API, which is what SharePoint 2010 does normally use. RBS recognizes that some
companies have developed BLOB-specific storage systems, and RBS provides a way to
offload BLOB data to those. RBS retains full awareness of the BLOB. That is, if you delete a
row, SQL Server will delete the corresponding BLOB data even though it’s stored
elsewhere. RBS also doesn’t provide quite the same level of data consistency that you get
when storing BLOBs directly in the database or by using the normal FILESTREAM type.
Figure 2.10 illustrates one way in which this can work. Note that in this example,
SharePoint has been modified (there’s a downloadable RBS component for it) to explicitly
use RBS.

Realtime 29

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
]

Storage Seiver

Figure 2.10: SharePoint and RBS.

Figure 2.10 is a bit of a simplification; the actual stack of components is a bit more
complicated, but this illustrates the general idea. For completeness’ sake, I should also note
that RBS doesn’t always require that an application be aware of it. [t's something that can
operate solely within SQL Server, as shown in Figure 2.11.

Realtime 30

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
]

Storage Server
Figure 2.11: Transparent RBS.

Microsoft’s general intention is that providers of BLOB stores—that is, vendors—will write
RBS-compatible providers that tell SQL Server how to talk to that vendor’s BLOB store.
Microsoft offers an RBS provider that simply utilizes the FILESTREAM type, so you can get
a basic RBS setup running out of the box (with SQL Server 2008 R2, at least). Essentially,
what you do is create a new database in SQL Server that will be your “BLOB Store.” You
configure RBS on your SharePoint database to offload BLOBs to that BLOB Store; the BLOB
Store in turn is set up to use the FILESTREAM type to push the BLOB data to disk. So the
BLOB store winds up being nothing more than pointers to the actual BLOB data; the
SharePoint database, in turn, contains pointers to the BLOB Store. Figure 2.12 shows how
this all fits together.

Realtime 31

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones

. BLOBs stored in
* FILESTREAM types, |
so they're redirected
to the file system

Figure 2.12: Microsoft’s FILESTREAM RBS provider.

Again, all of this happens locally on the SQL Server—the files must be on the same physical
machine as the BLOB database when using Microsoft’s FILESTREAM RBS provider.

Pros

Obviously, the big advantage here is reducing your SQL Server database size—by as much
as 90 to 95% in some instances I've seen. That’s huge for maintaining SQL Server’s
efficiency as well as giving you a bit more flexibility in the backup and recovery
department. Using strictly the Microsoft-offered FILESTREAM provider, however, does
limit your flexibility: You're still stuck with only local storage, and there are complex
interactions with other SQL Server features.

RBS is definitely the “way forward” for both SQL Server and SharePoint. Using RBS will
provide a longer future for you than EBS will.

Realtime 32

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Cons

RBS obviously creates a somewhat more complex environment. Although normal SQL
Server backups can work transparently, third-party backups may or may not work with
RBS, depending on their exact approach—so it’s something to investigate.

Not every RBS approach is created equal. You explicitly need to ensure that offloaded data
can still contain metadata, still be indexed for searching, still be managed by SharePoint
and its security rules, and so forth. You might want to offload different types of data to
different locations, and the RBS provider would need to offer that kind of filtering
functionality; if you just want to offload everything, you can likely use a simpler RBS
provider.

Finally, RBS does require the latest versions of SQL Server and SharePoint. Thus, if you're
stuck using older versions with no chance of upgrading, this might not be an option for you.

Third-Party Approaches

Many third parties are now offering their own RBS providers, as RBS is the officially-
supported BLOB offloading mechanism. SharePoint only needs to understand that “RBS is
in use;” it doesn’t care what's actually handling the BLOBs in the background.

How It Works

Third parties can either write an RBS provider that is installed on SQL Server or even tap
into the EBS architecture used by older versions of SharePoint. If you're in a mixed-version
environment, an extender that can use either RBS or EBS might be desirable.

Added Flexibility

Third-party RBS providers can provide much faster BLOB offloading and can take more
load off SQL Server. Keep in mind that the RBS FILESTREAM provider still places aload on
SQL Server because SQL Server has to process the BLOBs into and off of the file system.
Third-party providers can also offer other features:

e Offload to remote storage (such as a network-attached store or even to cloud
storage)

e Cache BLOB data for transmission to off-premises storage (such as a cloud-based
backup)

e Spread BLOB data across multiple storage locations, potentially storing different
types of data in different places—Figure 2.13 shows one way in which that might
work, with files of different categories (perhaps defined by SharePoint metadata)
are offloaded to different storage mechanisms

Realtime 33

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
]

Immediately =~ Redundant; | |
“pacred pn | ! indant | Backedup

weaekly

cloud | backup

Figure 2.13: Offloading data to different locations.

e Add secure deletion (erasing) to the BLOB deletion process to help comply with
security requirements

e Compress and/or encrypt BLOB data—something that the native FILESTREAM
provider cannot do

e Work with hierarchical storage mechanisms for tiered storage, enabling you to
migrate older content (for example) into near-line storage; note that some vendors
may implement this kind of functionality as a discrete product that works in
conjunction with a separate RBS provider, while others may build the functionality
into an RBS provider

e Transparently ensure that SharePoint can access BLOB data for search indexing

Realtime 34

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Note

A third-party RBS (or EBS) extension doesn’t even have to be expensive—
some companies offer these providers for free and intend for you to use them
with the storage resources you already have or plan to implement. Try a Web
search for “free sql rbs extender” and see what comes up.

Coming Up Next

So that’s the large item storage taken care of. In the next chapter, we need to look at
another way in which large items come into play: legacy, or external, content. In the perfect
world, you'd consolidate all of your data-sharing activities into SharePoint, including all
those old-school file servers that you have laying around. Unfortunately, you’d be
exponentially loading your SharePoint servers, which might not be the best idea. Is there a
way to get all of your shared files into one place—like SharePoint—while still maintaining
great performance and smart utilization of your storage resources? We’ll see—coming up
next.

Realtime 35

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones

Chapter 3: Optimizing SharePoint Storage
for External or Legacy Content

Shared folders. External databases. Even media files—audio, video, and so on. We want it
all in SharePoint so that it’s version-controlled, secured, and searchable—but can we afford
to bloat the SharePoint database with that much content? Adding all that content will not
only result in a pretty sizable SharePoint database but also take up a lot of expensive
SharePoint storage. However, with the right tools and techniques, you can bring that
content “into” SharePoint, while keeping it stored “outside,” helping to optimize your
SharePoint storage and maintain a smaller, more manageable SharePoint content database.

What Is “External Content?”

Today’s businesses not only have a ton of data but they have it spread all over the place.
Ideally, we could find a way to get all our content into one place, where users could search
for it, read it, and potentially even submit changes as appropriate and allowed. SharePoint
can’t quite get you to the point where all your data is in once place—but with the right
tools and techniques, it can come remarkably close to that goal.

Databases

Businesses keep more data than ever in databases. In fact, it seems as if every major
corporate application written these days requires a database of some kind. We don’t
necessarily want people to be able to use that data from within SharePoint, but a lot of the
information living in databases can be used to great effect in SharePoint-based dashboards
and other visualizations. For example, why not display charts and goals right on SharePoint
home pages, keeping employees connected with the company’s top-level goals and letting
them know how well they and the rest of the company are doing in achieving those goals?

Of course, you certainly wouldn’t want to copy all that business data into SharePoint just to
create charts and graphs, or to use the data in other ways. Ideally, you want SharePoint to
be able to access the data where it sits—in a secure fashion—so that SharePoint doesn’t
become a means for users to gain access to data that they shouldn’t be looking at.

Realtime 36

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Files in Shared Folders

The first corporate local area networks (LANs) were used primarily to connect users to
each other—and to use each others’ machines as file servers. The first server applications
were primarily focused on sharing files. In fact, the first collaboration software—such as
Microsoft Mail and cc:Mail—were essentially just elaborate file-sharing services. Shared
files and folders have, in other words, been a key means of sharing information on the
network since the very beginning of modern networks.

As the amount of data we store continued to grow, however, shared folders became less
and less efficient. We had to map an increasing number of network drive letters to
increasingly-complex shared folder hierarchies in order for our users to find all of that
data. And keeping it organized was (and is) often a nightmare.

Shared folders don’t typically support versioning, workflow, and all the other great features
present in SharePoint. In fact, it would be great if we could just migrate all of that shared
folder content into SharePoint. Doing so, however, isn’t always feasible. The sheer amount
of data may make a complete migration away from file servers impractical; in some cases,
other processes depend on files being located on file servers, not within SharePoint.

In other cases, migrating shared folders into SharePoint can seem, well, wasteful. After all,
they’re just files, right? Why put them into a database, which is stored on a file system,
when we could just store the files on the file system directly? Of course, but not having that
content in SharePoint, we don’t have access to features like versioning, workflow, advanced
permissions, and so on—so there definitely are benefits to having the content “in
SharePoint” somehow. However, perhaps a straightforward migration isn’t the best means
of achieving that goal.

Media Files

Media files, more than other kinds of shared files, can highlight the worst about file servers
and be the most difficult to bring into SharePoint. Media files—audio and video files,
primarily—are difficult to index when they’re just living on a file server. After all, a search
engine can’t (yet) “listen” to an audio file and extract keywords that can be used in
searching. The file system doesn’t, unfortunately, provide us with many ways to manually
add those keywords as metadata, either. File servers make it tough for users to find the
media files they want and need.

SharePoint could improve the situation with its more-robust metadata capabilities and
search features, but moving media files—which tend to be pretty large—into SharePoint
can exponentially increase storage utilization and even reduce database performance.
Moving media into SharePoint can even reduce the performance of the media itself: Most
media files are meant to stream, something that can be done quite readily from the file
system. Streaming data from a database, however, goes pretty much against everything
that our databases are designed to do. It can be burdensome for a database to retrieve
streaming content properly, and when the database can’t keep up, media playback is
affected.

Realtime 37

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Again, we're faced with a bit of a dilemma: It would be nice to have media in SharePoint for
versioning, workflow, indexing, and searching, but it seems as if doing so would negatively
impact storage utilization and might even result in poorer user experiences.

Files from the Cloud

Recently, businesses have started storing more and more data in a variety of cloud-based
repositories. Those repositories take the form of simple FTP servers to cloud-based
databases, and from Web sites to dedicated cloud-based storage. We’'re basically
distributing our old file server model across the Internet—and we’re not doing much to
make it easier to find and manage that data.

But can we just pull all of that cloud-based data into SharePoint? Doing so would make it
easier to access and manage, but it seems as if that would defeat the whole point of putting
the data into the cloud. If we’re just going to pull the data back into our SharePoint data
center, then we really don’t need the cloud at all, right? Again, a dilemma: How can we
make that cloud-based data appear to live in SharePoint without moving it out of the cloud?

Note

You're probably thinking, “SharePoint in the cloud!” as a solution. Not quite.
Although it’s true that many companies offer SharePoint hosting, their
SharePoint installations can only access data living in the hosting company’s
data center—just as your SharePoint servers would seem to be able to access
only data on your network. The ideal would be to have data that could live in
one part of the cloud, yet still be “in” SharePoint—either in your own
SharePoint servers or perhaps even those you've outsourced to another part
of the cloud.

Today: Data Chaos

Frankly, it's amazing that our users can find anything—and it’s no surprise that so much
disk space is given over to the copies of data that users make into their “home” folders—
the only place they can organize data in a way that makes sense to them. We've created
“data chaos,” illustrated in Figure 3.1, where our users are running all over the place
(usually virtually, but not always) looking for files, media, data, and more.

SharePoint seems to offer a solution—a way to organize data that is accessible to everyone
who needs it: rich metadata, tagging, and search capabilities, and the ability to version-
control information, rollback to prior versions, and even apply workflow rules to
information updates. But to really benefit from SharePoint’s capabilities, we need as much
of our information as possible inside SharePoint. Simply migrating everything, however,
could have a negative impact on expensive SharePoint storage resources, and on
SharePoint’s own performance. It’s possible that migrating might be the perfect choice for
some types of information but less than perfect for others. But what can we do besides
migrate the information, if our goal is to take advantage of SharePoint’s features?

>altime 38

.__.
P
F aw

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones

£ K E

Fila Server File Server File Server

N

;e

Cloud

NN NNNNNN
EEMEEGE

bk b bl b s

Storage
Figure 3.1: Data chaos—our users are forced to look everywhere for the information
they need.

What's the answer? There are actually a few approaches, and they differ depending on
exactly what kind of content you're working with.

Realtime 39

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Traditional Approaches for Getting External Content into SharePoint

Let’s start by looking at some of the traditional ways of incorporating external content into
SharePoint. None of these techniques are bad, but they’re not always the best. They offer
compelling features and they help to meet certain business goals, so it's important that we
consider them as potential tactics.

Integration

When you're dealing primarily with data that lives in external databases, you're not going
to migrate it into SharePoint unless your plan is to create a SharePoint-based application
and eventually eliminate that external application (and its database) entirely. For this
discussion, I'll assume you have data that you want to keep separate from SharePoint, but
that you want some means of accessing that data from within SharePoint. Traditionally,
Microsoft’s answer—introduced with SharePoint Server 2007—has been the Business Data
Catalog (BDC).

The BDC

The BDC is a shared service within SharePoint, enabling SharePoint to grab business data
from back-end server applications—ideally without any coding on your part (prior to the
BDC, integrating back-end data almost always required some form of custom programming,
which could be expensive to both create and maintain). The BDC allows data to be
integrated into user profiles, custom applications, Web Parts, lists, and even search. It also
provides support for displaying data drawn from both databases and from Web services—
such as SAP, Siebel, or other line-of-business (LOB) applications.

Figure 3.2 shows how back-end data can be integrated into SharePoint portals. Here,
marketing campaign and other information is drawn from a back-end database or Web
service.

:i Marketing Campaign Tracking This Sibe: Merketing Cam B)
Mo TeamBlog FAG U Live Ol deos Events Surveys Templstes = MWPs Workheade = Befand the Somnes ——rEr T
Wiy Al St Corkent
Dooument s
= [ntegrated Marketng
Pl Announcemenis LEarn more about
= Campason Stabus Windows® SharePoin
" _,_{__” = Getting Shasted with the Integeated Masketing Campasgn Tesker 12007 451 AM SEr\-I:e!’ o
bry Lawrence L
= Campalon: hnakrstes U e Gatte Tarted Guids, lossted in the Assstancs Folder in tha Quick Linch bar, Lo 582 usar Ty
 Tedn REsources permissions and custome this she to meet the reeds of your organzaton. j" Click Here for
= Assistarce Resources
Lisks Campaiy Budget Summanry
g Total Spend Anshyeis 10.05%
= Marhieting Team Eampaign Hame Budaet Allctied Budget Spent Budget Spand Analyin Links
Cortaty - * T 0 = Budd a4
£ Campagn A $1,200 0 % Catwalik]
= Tasks Campuson B $1,000 =0 210 . Custimbink?
Pichures , .
Campaipn Proqeress SURmim.ar
Discussk - b e = F W
Compléste;
¥ # Upcomng: @
Sder # InMakst: 0
People and Groups Campasgn Name Start Date End Duate Campaigh Progres
Campumgn A 1152007 =0T 100%
smpagn B 12008 100 (100

Campakgn Informathon

@] Covpaugna FROFI00T 451 AM Lienice Ly

@] Corowgn 12007 451 AM Liwrence L

Figure 3.2: Using the data accessed by the BDC.

Realtime 40

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
___|

From an architecture standpoint, the BDC uses ADO.NET and other data-access
techniques—such as a Web service proxy—to access back-end data from a variety of
sources. It then makes that data available to a variety of SharePoint features. XML-based
metadata is stored in SharePoint itself to help manage that data, and some of the back-end
data is cached within SharePoint to enable features like search. Figure 3.3 illustrates the
basic architecture.

Live Data Cached Data Live Data

Business SharePoint User
Data Web ‘EE.E__ e Profile
Parts o Importer

Business Data Catalog = g

Web
Service
Proocy

Web
Service

Data
Sources

Figure 3.3: BDC architecture.

That XML-based metadata is the real functionality of the BDC. It defines the “mapping”
between SharePoint and the back-end data, defining back-end entities, data relationships,
and so on. You have to define this metadata when connecting the BDC to back-end data;
SharePoint includes tools for doing so.

Business Connectivity Services or “Two-Way BDC”

For SharePoint 2010, BDC was renamed Business Connectivity Services (BSC), and given
the ability to do more than just read data from back-end services. Now, it can also write
data to the back-end. BCS can also be used from within Office 2010 applications. You might
use Word to perform a mail merge from a customer database, for example. In SharePoint
2010, “BDC” now stands for “Business Data Connectivity,” the service that makes BCS work.

Realtime 7o

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones

You still have to create XML models of your back-end data, and those models help control
the ability to write data back to the back-end. As Figure 3.4 shows (drawn from
http://msdn.microsoft.com/en-us/library/ee557658.aspx), the number of ways in which
this data can be consumed is even larger than it was with the old BDC. It even includes
robust caching so that users—say, someone using Excel 2010—can access data even if the
back-end data source isn’t accessible at the moment. BCS can sync read and write
operations with the back-end server, once it does become available.

: y _u @ @ 3

\\'\\ ////
- P
NN

ni\\ Iﬁé

Database WCF/Wekb Custom
Servica Ennnectwn'y'
Assembly

.
e
.

Figure 3.4: BCS architecture.

As shown, you can also write custom .NET Framework assemblies to broker connections to

back-end data, enabling you to impose and enforce business logic between SharePoint and
your back-end data.

Resource

You can read more about BCS at http://msdn.microsoft.com/en-
us/library/ee557658.aspx.

BCS remains a solid way of integrating back-end data into SharePoint. It isn’t exactly “no
coding” as sometimes implied because you do need to be able to create your data models,
but you won't have to actually write programming code in order to create those models.

Realtime 42

publishers

http://msdn.microsoft.com/en-us/library/ee557658.aspx
http://msdn.microsoft.com/en-us/library/ee557658.aspx

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Migration

Migration: Moving content from place to place. In this case, permanently moving content
from file servers or wherever into SharePoint. This isn’t an option with back-end data; I'm
not presenting migration as an alternative to the BDC/BCS. But for files, media, and so
forth, migration is an option.

How It’s Done

Migration is typically performed using a tool of some kind—and a plethora of them exist
from third-party vendors, although migration isn’t a space that Microsoft has directly
addressed with any major effort.

At its simplest, migration can involve simply copying a folder hierarchy into SharePoint,
while maintaining whatever access permissions the file had on its file server. A more
complex migration might also involve restructuring the data because SharePoint offers
organizational metaphors and techniques that aren’t present in a simpler, hierarchical
folder structure on a file server. Migrations can also help automatically populate document
metadata, which helps make those documents easier to find through SharePoint’s search
facilities.

Benefits of Migrating Content

The benefits of migrating content into SharePoint are varied and significant. Your content
becomes indexes and searchable. You gain the ability to add version control to documents,
and to enforce workflow rules around document updates. You can in many cases employ
simpler permissions structures, using SharePoint groups rather than individual user
permissions—making long-term permission maintenance easier. You can even make it
easier for content to be accessed from a variety of places, since SharePoint not only
integrates with the Office suite of applications, but also exposes content via a Web-based
interface.

But perhaps the biggest benefit of migration is that you can start to end data chaos. Along
with BDC/BCS, migration can help bring all of your content into one place, as shown in
Figure 3.5. Users have one place to go to find everything they need. You can start to manage
permissions in this one place, report on utilization in this one place, and so on. You won'’t
need to spend days teaching new users where to find everything on the network, and you
can stop mapping a dozen network drives in logon scripts. Users begin to utilize SharePoint
as—well, as a replacement for file servers, perhaps. Everything lives in one place.

By keeping authoritative copies of data in a single location, you can also start to avoid the
bloat that often accompanies file servers. Users won’t have as strong a need to make copies
of data into their home folders; they can simply keep smaller shortcuts to SharePoint-
stored documents. Everyone will be working from a single copy of information, rather than
having dozens of copies spread across everyone’s home folders.

Realtime 43

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones

SharePaint
Fliie Server File Berver
@ g ll Data
| - 11.| 1‘1\' : n
- | Dalabase
User

Figure 3.5: SharePoint migrations can help reduce data chaos.

There are a lot of strong arguments in favor of migrating everything into SharePoint.

Downsides of Migrating Content
There are, however, downsides to migrating content, many of which I've outlined already.

e Large content items are going to take up a lot of room in the SharePoint database.
That’s going to complicate SharePoint performance management, as well as
database maintenance tasks like backups, defragmentation, and so on.

e Mediaitems don’t work as well from a database—which as I've pointed out isn’t
designed for streaming data—as they would from a file system.

e Some file server-based data, as I suggested earlier, needs to be on a file server in
order to interact with other processes. For example, you might have a process that
“watches” a given folder for new files, and does something with them; that won’t
work if the file “lives” in SharePoint.

Ideally, there’s some middle ground, where we can get the advantages of having content in
SharePoint—without the downsides.

Realtime 44

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Goals for External Content

Let’s establish some business goals for all of this external content. Let’s define—at a
business level—what we’d like to do, and then see if it’s possible to achieve that.

Keeping the Content External

Our first goal will be to keep external content outside of SharePoint, simply because there
are benefits in doing so. We'll maintain our file servers for those processes that rely on
them, and we’ll be keeping our SharePoint database from becoming overly-bloated with
large content items. File servers are really good at storing files, after all, so let’s let them
continue to do so.

Let’s start building a picture of what we want this to look like. Figure 3.6 will be our
starting point: External content (represented as page icons) will remain external. They’ll be
accessible to external processes that might need them, and they’ll remain secured by
whatever security (such as SQL Server or NTFS permissions) that’s in place.

i U

SharePoint Fle Berver

Logr
Figure 3.6: Leaving external content where it is.

Of course, now we're facing some downsides, because it’s like we don’t even have
SharePoint. So we need to move quickly on to our next business goal.

While Surfacing the Content in SharePoint

We want that external content to appear in SharePoint. In the case of database data, that
might be through something like a custom application, or a BDC/BCS type connection. The
data stays in the database, but SharePoint becomes an interface to it.

Realtime 45

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones

Similarly, we want SharePoint to be aware of our external files and folders—including
media content. We want users to be able to find that content from within SharePoint.
SharePoint will thus remain a single point-of-access for our users—helping to kill data
chaos—but it will just be “keeping track” of the external content’s location, rather than
necessarily storing it in the SharePoint database. Figure 3.7 shows this updated goal, with
shortcut icons indicating that the content is surfaced in SharePoint, but not actually present
within it.

Loer
Figure 3.7: Surfacing external content in SharePoint without migrating it.
Now, we need to be very specific about our business requirements for how this content is
treated within SharePoint. It’s not that tough to just create a little shortcut, within

SharePoint, to external content; we want a bit more functionality out of the situation than
just that.

And Making External Content a Full SharePoint Citizen
We want our external data to be a “full citizen” of the SharePoint environment. Specifically,
we want external data:

e Included in a SharePoint Document Library, not just as a list of external links
e Included in workflow operations
e Available for alerts, so that users can be notified when content changes

e Added to SharePoint’s search index

|
Realtime 46

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones

e Taggable with metadata to improve searchability

e Controlled by SharePoint’s permissions (at least, all access via SharePoint should be
controlled that way)

e Accessed directly from within SharePoint by SharePoint-aware applications like
Microsoft Office. We should be able to have Word open up a SharePoint-based Word
document, even if that document is technically still living on a file server someplace.
We want to remove users’ awareness of those file servers, in other words.

Basically, we’re asking a lot: We want our content to act as if it lives in the SharePoint
database, even if it doesn’t.

And we want this for more than just file servers. We also want content located on local
and, possibly, remote FTP servers treated this way, along with content that may be located
in outsourced, cloud-based storage. In fact, let’s update our drawing—in Figure 3.8—to
reflect that added requirement.

™
A

B
¥

a

s B

File Barver

¥

Cloud

Figure 3.8: Including FTP- and cloud-based content in SharePoint.

We can do all of this. We just need to take a more creative approach for getting external
content into SharePoint—more creative than a simple migration, that is.

|
Realtime 47

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Note

From here on out, I'm going to sort of drop the “external content from a
database” aspect of the discussion. SharePoint’s BDC/BCS functionality
serves that need well, and custom applications are needed if you exceed the
capabilities of BDC/BCS. I'm going to focus on external file-based content
(including media files) living on FTP servers, cloud storage, or file servers.
I'm not implying in any way that database-based data isn’t important, just
that it’s a problem with a clearly-defined native solution.

Creative Approaches for Getting External Content into SharePoint

So let’s talk about creative approaches. In general, these are things you’ll need third-party
software to implement; we're not talking about native SharePoint capabilities. In general,
there are two things to discuss: Content connectors and the special considerations
necessary for those large, streaming-media files.

Content “Connectors”

A content connector is designed to take external data—living, perhaps, on a file server, FTP
server, or some cloud-based storage—and present it through SharePoint. Done correctly,
this meets all of our requirements: We get to leave our external content outside SharePoint,
for a trimmer SharePoint database, but we get all the benefits of having the content “in”
SharePoint, like search, workflow, alerts, and so on.

There’s a trick, here: It’s still possible to access the content from its original location. That
means there has to be some kind of two-way synchronization, so that changes in either
SharePoint or the native location will be synchronized to the other. For example, if
someone changes a filename in SharePoint, we want that mirrored on the file server where
the file actually lives. One way to accomplish that synchronization is to have a tool that can
monitor both SharePoint and the content’s native location for change events. This is a
superior approach to time-based synchronization, which simply checks for changes at a
fixed interval.

Architecturally, this is accomplished through an extension to SharePoint itself. That
extension receives or gathers information about external content, and populates
SharePoint’s database with the information. Figure 3.9 shows how this might work. Note
that I'll use “N” to designate content natively stored in SharePoint’s database, and “X” to
indicate external content.

Realtime 48

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones

¢

Figure 3.9: Incorporating external content into SharePoint.

That information includes an identifier that the content is, in fact, external, so that when a
user attempts to access the content, the SharePoint extension can physically retrieve it.

Figure 3.10 illustrates.
Get "X "—— ﬁ
User

X

Figure 3.10: Accessing external content from SharePoint.

Realtime 49

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
___|

The important fact to remember here is that the user is only dealing with SharePoint. Any
application—like the Office suite—that works with SharePoint will work with this external
content, because the content appears to be living in SharePoint. The extension simply
makes the fact that it’s really located externally transparent.

Special Considerations for Media Files

You could do that exact same “connector” trick for media files. However, there’s a danger in
doing so: You'll be putting a decent burden on SharePoint’s Web Front End (WFE).
Essentially, the WFE is going to become responsible for streaming the media content to the
Web-based user. There’s nothing wrong with that, since it's what Web applications are
more or less designed to handle, but there is a better way. Simply bypass the WFE.

You still have a SharePoint extension operating, here. It gathers your external content, be it
located in a file share, FTP server, or in the cloud—FTP and cloud being more important
when it comes to media, since so much of it may be located externally.

Note

Make sure the SharePoint extension you select supports a variety of media
types—WMV, WMA, MP3, AAC, VP6, MP4, MPEG, MPG, AVI, WAV, and so
forth. You don’t necessarily want to be “stuck” just doing Microsoft-friendly
media types, or any other vendor’s media types for that matter. You want
support for them all.

By having the extension stream content directly to the user’s browser, you offload some
work from the SharePoint WFE. That helps keep performance high for other users, and
makes SharePoint itself more scalable. Figure 3.11 shows how that might work.

X

Figure 3.11: Streaming media directly to the user, bypassing the WFE.
|

Realtime 50

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones

How Do You Do It?

There are a number of ways that you could physically implement such a connector. One
way would be to simply install an extension of some kind on to each SharePoint server.
That might not be optimal in high-load environments, though, since each server would be
responsible for maintaining its own list of external content.

A better approach, shown in Figure 3.12, might be to adopt a client-server model. A central
“external content server,” shown in the middle, would be responsible for loading “stubs”
for external content into SharePoint databases. A client agent, running on each SharePoint
server, would handle that communication with the central external content server. By
populating SharePoint with the appropriate stubs, the system would enable SharePoint to
discover, index, view, and manage the external content. The central server would also be
responsible for detecting changes and synchronizing them as I described earlier.

SHAREPOINT FARM 1

SHAREPOINT FARM 2

Figure 3.12: Implementing an external content connector.

Obviously, this is just a rough sketch of how the implementation might actually work; each
vendor producing such a solution would no doubt have a unique approach.

Realtime 51

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Coming Up Next

Most businesses are awash in old data, much of which they’re required to keep handy. It’s a
good thing we're closer to the “paperless office” than a decade or two ago because
otherwise we’d be drowning in archived content. But “old data” doesn’t mean “unneeded
data;” you still may have to refer to that dormant, older content from time to time. Keeping
it all in SharePoint is a great way to bloat your database, reduce performance, and consume
costly storage resources—but removing that data from SharePoint makes the data more
difficult to find and access. In the final chapter of this book, we’ll look at ways to
incorporate dormant and archived content into SharePoint, while still maintaining good
performance and responsible utilization of storage resources.

Realtime 52

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones

Chapter 4: Optimizing SharePoint Storage
for Dormant and Archived Content

Do we really need to keep every version of every file in the SharePoint database forever?
Probably not—but where do you draw the line? How can you maximize your version
history while minimizing your storage impact? Better yet, how can you take advantage of
your existing tiered storage—including tape storage—to archive content without creating a
SharePoint database that just grows and grows and grows?

When Content Goes “Dormant”

So what, exactly, is “dormant” SharePoint content? Where does it come from? What makes
us consider it dormant instead of active—and why use the word dormant rather than
something more final like dead? I'll offer up four examples of dormant content—and
provide you with some abbreviated case study examples from customers I've worked with
to help explain the differences between dormant and dead.

Entire Sites Are No Longer Needed

Sometimes you'll find that you have completely superfluous SharePoint sites. [think this
probably happens most frequently through mergers and acquisitions, but I've also seen a
lot of them come about from simple bad planning—or in some cases because things didn’t
pan out quite like anyone expected.

| worked with one customer who had deployed separate SharePoint sites for
their main Human Resources department and a separate one for employee
perks—you know, discounted tickets to the local theme park, information on
the upcoming company picnic, application forms for the local credit union, that
kind of thing. The theory was that the perks weren’t exactly work-related, so
while they were managed by someone in HR, they would be kept separate from
the HR site.

The problem is that the employees kept going to the HR site to find that
information because they knew someone in HR was responsible for organizing
it. Prior to SharePoint, in fact, one HR employee—Ilet’s call her Kathy—was
famous for maintaining the highly-decorated bulletin board of perks and other
information in the employee break room.

At first, the company just put some very visible pointers onto the HR SharePoint
site. Then they started to realize that most of the HR site’s traffic was just
redirecting off to the perks site. Everyone started to wonder why two sites even
made sense, and the perks content was quickly integrated into the HR site.

Realtime 53

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

The only problem with declaring the perks site “dead,” and preventing the
company from wanting to delete it outright, is that it still contained a lot of
historical information that everyone wanted to preserve. Kathy, in particular,
wanted to make sure she’d have access to all of that older information so that
she could make sure she was negotiating reasonable new perks with outside
companies.

In a merger or acquisition, it's common to want to merge duplicate SharePoint sites—Ilike
merging two HR sites into one. It’s also common to want to maintain the original content
someplace, for reference purposes. You might want to make sure that you migrated
everything of importance, for example, or you might be required by law to retain some
pieces of information for a designated period of time. In Kathy’s case, she wanted to hold on
to all that outdated content simply because it served as a good reference for her. Other
employees also needed some of the older information—programs that they were still
participating in, for example, but that were no longer enrolling new participants. The
company could have just migrated all of the information to the main HR site, but that
dormant content—the stuff a few people would need some of the time but that nobody
needed very often—just felt like bloat.

Projects End

One of the biggest reasons to see SharePoint content become dormant is when projects
end. Often a project will have a dedicated section of a SharePoint site, or might even have
an entirely dedicated SharePoint site devoted to it. As the project winds down, that content
becomes dormant—but not so “dead” that everyone’s willing to just delete it and be done
with it.

I've done a good amount of work for technology companies, and one of the
larger ones | work with spins up a new SharePoint site for every new network
integration client they begin courting. All of the bids and proposals, requests for
proposals, and other sales details are kept in that SharePoint site—an invaluable
way for everyone on the sales team to access everything, collaborate on
documents, and so forth.

When the customer is finally acquired—or, sadly, when they lose the bid—that
SharePoint site is no longer needed. However, nobody ever wants to just delete
the thing. Many of the materials might be leveraged in future bids, for example,
and in cases where the company won the bid, they need to maintain that
information so that everyone can see exactly what was pitched to the
customer—in case there’s ever any disagreement.

When [first started working with this company, standard policy was to simply
leave every SharePoint site up and running. Forever. Needless to say, they used
a tremendous amount of storage, all for things that someone might need to
access on occasion.

Realtime 54

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

The company had just about convinced themselves to adopt the “archive and delete”
approach, which I'll look at later in this chapter, when I arrived. Before they did that,
though, I made them sit down and really lay out some of the business and technology
concerns around that dormant—but not dead—content so that we could come up with a
solution that actually met all of those needs.

Older Versions No Longer Actively Needed

One of the great features of SharePoint is its ability to maintain old versions of documents,
and to provide any authorized user with access to those older versions. But sometimes you
don’t actively need all of that old data, and it can take up a significant amount of space in a
SharePoint database.

I've worked with a couple of pharmaceutical firms over the years, and one of
the smaller ones uses SharePoint to keep track of a number of documents. Even
though those documents remain in active daily use, some of them have old
versions going back years. Nobody ever needs those old versions—they’re
hopelessly outdated in most cases—but the company is required by law to
maintain them all. There’s never been a single instance in the company’s history
where regulators asked for older versions—but it could happen, and so they
need to comply with the law.

The results are some seriously bloated SharePoint databases. Even in some of
their newer SharePoint sites, where they’ve implemented some kind of BLOB
offloading, they’re consuming an enormous amount of disk space storing these
old versions.

Regulatory compliance—or in some cases compliance with internal policies—is one of the
biggest reasons I see for dormant SharePoint content being maintained in live, active
SharePoint sites. Some companies will actually set up separate “archive” sites where they
move old stuff—but in some cases, depending on how they move data, they've found that
they’ve lost the old version info that was stored in the original site.

Content Is Phased Out
Sometimes, you just don’t need content anymore. But that doesn’t mean you're ready to get
rid of it permanently.

One of my clients recently started changing their entire business model. They
had been a software development consulting firm, and they were moving
toward network management and out of the software development business.
They still have tons of information stored in SharePoint—project specifications,
customer files, and so on—that they’re simply not going to need on a day-to-
day basis anymore. The owner of the company is concerned about deleting it,
though. He knows there’s information in there that someone will need every
other month or so—they’ve already seen that pattern, in fact, which is why
they’ve been reluctant to finally decommission those old SharePoint sites.

Realtime 55

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

They’ve actually considered moving that content to outsourced SharePoint
storage, which in some cases can be pretty inexpensive, just so that they don’t
have to maintain the servers, the additional Microsoft software licenses, and so
on. He just can’t bring himself to pay for services that are just there for dormant
content.

The first company I ever worked for was an electronics repair company, and for a variety of
reasons, they needed to keep every customer invoice they’d ever written. An entire room
was full of those cardboard banker’s boxes, stuffed with old invoices, payment records, and
so on—and, every month or so, someone would actually need to go in there and dig up
something out of the past. Just because content is old or has been phased out doesn’t mean
it's dead, but it doesn’t mean you have to relish spending production-level resources and
money to maintain it.

Business Concerns for Dormant Content

When [sit down with my customers to talk about why all their dormant content is still live,
and what they’d like to do with it, the reasons tend to break down into three main
categories. These are their business concerns, and in some cases they're a bit contradictory.

Storage Utilization

First and foremost, everyone is concerned about the cost of storing all that old information.
Server storage—especially for data-intensive systems like SharePoint—isn’t cheap. It has
to be redundant, often incorporates expensive hot-swappable drives and powerful drive
controllers, and frequently comes in the form of expensive Storage Area Network (SAN)
storage. Tell a director that he needs to buy more storage when he knows that a lot of it is
being occupied by dormant content, and he just gets frustrated. Here’s what one IT
executive told me in a letter one time:

It’s like file servers, all over again, and worse. When we had file servers, we
knew we had a ton of duplicate and useless content, so we started
implementing file type filtering, storage quotas, and so forth. That started to
bring the problem under control, but only barely. We still knew we had tons of
dormant content that should have been in a tape archive or something, but we
made a regular effort to identify that stuff and get it moved on a schedule. In
some cases we probably deleted stuff we shouldn’t have, but it kept the storage
bloat somewhat under control.

Now, with SharePoint, we're right back where we started from—only it’'s worse,
because we’re not only storing dormant content, we’re storing every version of
every document. So for every dormant file we have, there’s probably a dozen or
more old versions of that file floating around. We have less control over filtering
and quotas, and it’s actually more difficult for us to go in and identify the old
stuff. Plus, it’s all tied into the SharePoint database—we can’t just copy a bunch
of files onto tape and then delete them. We have to wrangle them out of
SharePoint somehow—and if we do that, how will anyone ever find it again?

Realtime 56

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

It's definitely frustrating. One customer told me that something like 80% of their
SharePoint database space was consumed by file attachments (which matches what I hear
from other customers), and that something like 70% of that space was files and old
versions that weren’t being actively used by anyone—but that couldn’t be entirely deleted,
yet.

Imagine living in a nice, three-bedroom house—where two bedrooms and every closet, not
to mention the garage, are filled with your kids’ memorabilia. You don’t want to throw that
kind of stuff away—you’ll want to pull it out when they finally bring the grandkids over
someday—but at the same time, it’s a bit frustrating to have all of your space consumed by
this stuff. So why keep it?

Regulatory and Industry Compliance

One reason companies hang on to their dormant content is, as I've mentioned, regulatory.
Either there’s a law, or some industry rule, that’s forcing them to maintain it all. HIPAA,
Sarbanes-Oxley, GLBA—they all specify retention times for information. In many cases,
though, they specify minimum and maximum times, meaning you must retain information
for a certain period of time—no matter how much disk space it takes to do so—but then
you must also remove the information once it’s retention period has passed. Managing that
can be quite complicated. In fact, after having a discussion with one IT executive on this
very topic, he wrote me to say:

It’s not complicated for us. We're just not going to permit data covered by those
regulations to be stored in SharePoint. We’ve built an “island” —a specific file
server—where that information is stored. Information in databases, like our
patient records, go into specific database servers. That way we only have to
perform retention and cleaning in a few well-known places. We're considering
adding a SharePoint site to that “island of compliance,” but it’s obviously a bit
more overhead than a file server. We have to make sure we can get the right
tools in place to manage the content within SharePoint, archive it, and so
forth—just like we already do for file servers.

On top of regulations and requirements imposed by external regulations and industry
rules, companies often have to deal with their own internal policies that require them to
retain content for some period of time.

Realtime 57

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Retention and Archiving Policies

Those internal policies can be just as restrictive and cumbersome—especially when it
comes to SharePoint-based data—as external requirements. One of my customers isn’t
subject to any regulatory or industry rules, and he still struggles with maintaining retention
policies.

We're complicated. We don’t have to keep any data, legally, but we choose to
keep quite a bit. Anything related to one of our products has to be retained for
ten years past the time we discontinue that product family entirely. Personnel
records we keep for three or four years after the person leaves, unless they’re
entitled to ongoing benefits of some kind, in which case it’s pretty much
forever. Any communications with customers are retained for five years. Tax
and financial records are seven years, | think—that’s a legal thing, | guess, and
not an internal policy.

Those of us in IT just can’t deal with it. Nobody actually classifies the data, so
we’re supposed to figure out what to keep and for how long. Since nobody has
rules on the maximum time we have to keep something, we pretty much just
keep everything, forever. We tend to grab anything that’s more than a couple of
years old and write it out to tape, so it keeps our production servers from
getting too bogged down—but | tell you, it’s a major production when we have
to go grab something from tape.

That “major production” is one of the significant disadvantages of the “archive and delete”
approach, which I'll discuss in just a moment. But this excerpt does bring up a new and
interesting point: IT overhead. Too often, IT is tasked with figuring out what content can be
deleted, archived, or whatever—and they often lack the tools and background to make the
right decision. In those cases, it's not unusual to see IT err on the side of caution and just
“keep everything, forever.” Which can certainly be expensive.

The “Archive & Delete” Approach

The traditional approach to dormant content is to write it to some kind of archival medium,
and then delete it. Simple. Of course, when it comes to SharePoint things can get a bit more
complicated.

Techniques

Think about how you might traditionally archive dormant content. ['ve worked with
companies that used optical media archival—a fancy way of saying they bought DVD
recorders for their users, along with stacks of blank DVD-Rs. Other companies write data
off to tape, and then delete it from the file server or whatever. The idea has always been to
move the data to some durable external storage—typically offline storage, such as a tape or
DVD-R or CD-R—and then delete that data from main-line, production storage.

Realtime 58

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

In SharePoint, that gets a bit trickier. First, you have to extract the actual content from the
database. Ideally, you'll grab old versions and metadata, too. All that gets written to your
archive media, and then you have to delete it from SharePoint. That’s definitely a bit more
complex than just burning a few files onto a DVD-R. I approached one customer who
currently uses the “archive and delete” approach and asked them how they did it. I figured
they had acquired some kind of SharePoint archival tool that found unused data, extracted
it, stored it with some kind of XML file that contained the metadata, and then perhaps built
an index of data that had been stored offline. Here’s what they told me:

We wish we had something that fancy. No, we just take a full backup of the
SharePoint database and store it as a permanent archive, outside of our normal
backup tape rotation. We do it once a month or so.

It works great until someone actually needs it. We don’t actually have any way
of describing what’s different between any of the tapes, so basically we take a
guess as to which tape we need, restore the database to a spare SharePoint
server that we have running in a virtual machine, and then see if it contains
what we think it does. It’s a huge pain in the neck.

As for deleting the data, we did write some scripts to do that. We find anything
that hasn’t been accessed in about a year and just delete the item entirely.
We're starting to produce a list of what gets deleted by the tool during each
run, so we basically know that the most recent version of any deleted file is on
whatever tape backup we made right before we ran the delete job. We've been
using Windows’ Desktop Search feature to search through those files and find
filenames, and that does help us identify the right backup tape more quickly.

Ouch. Yet, as [touched base with more and more customers, this was their approach for
dealing with dormant content: Make regular backups, and then delete stuff that’s not being
actively used. Maybe keep track of what you deleted, so that you’ll at least have a clue about
where to go find it in your archives. The “archive and delete” approach is definitely not a
pretty picture.

Realtime 59

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Pros and Cons

There’s really only one “pro” here: You get dormant content off of your production servers,
and you do so in a way that makes it at least theoretically possible to get that content back
if you need it. The “cons,” however, are many:

¢ Finding the content. Actually locating content in the archive can be impossible,
especially if you're not keeping track of the content as you delete it, or if you're not
tracking it in some searchable fashion. The bottom line is that you've pulled the
content out of SharePoint, whose main job was to make that content easier to find.
You won’t be able to search by content keyword, on metadata, on tags, or anything
else. The content is gone from SharePoint.

e IT overhead. Find the content in your indexes—if you have them. Figure out the
right backup tape to use. Restore the tape to a spare server. Spin up the spare server
and access SharePoint to get the file you need. Need another file? Start over. To say
that the “archive and delete” approach involves significant IT overhead is a major
understatement.

e No self-service. Using the “archive and delete” approach certainly makes it difficult
to offer users a self-service options for retrieving archived data. Typically, someone
from IT has to retrieve tapes and process them, because the traditional approach
doesn’t involve using near-line storage.

¢ Manual archival selection. With the traditional approach—especially the “back up
the whole server and then delete stuff” approach—there are no real automated
means of locating data that’s dormant and ready for archival. That means there’s
even more overhead—often on IT—to select content for clean-up.

With those cons and that pro in mind, as well as all of the business concerns and
requirements already covered, let’s establish some specific goals for managing dormant
SharePoint content.

Goals for Dormant Content

The idea is to synthesize what we like about the “archive and delete” approach with our
business goals and concerns, while seeing if we can find a way to mitigate the downsides of
the more traditional offline storage-based archive approaches. We’ll come up with a short
list of major capabilities that we want to add to SharePoint, enabling us to look for
solutions that provide those specific capabilities.

Realtime 60

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Reduce SharePoint Database Utilization

Our first goal is to reduce SharePoint storage utilization—something even a stack of DVD-
Rs, a DVD burner, and the Delete key on your keyboard can accomplish. But we ideally
want something that’s not going to require some poor human being to go through every
SharePoint site and figure out what’s dormant and what'’s still active. Ideally, we a way to
specify some business rules. Content with a “Retain” metadata tag, for example, might be
kept online for a year and then considered “dormant” if it isn’t being accessed. Other
content might be considered “dormant” after a few months. Whatever our rules are, we
need a way to define them so that the computer can do the hard work of figuring out what's
considered dormant. After all, isn’t performing repetitive, boring, manual tasks exactly why
we invented computers in the first place?

We also need to accommodate those situations where we’re ready to take an entire
SharePoint site offline when, for whatever reason, we don’t need that site anymore. Taking
it offline is, of course, the easy part—we also want to make sure we can still get to it.

Keeping Dormant Content Accessible

That’s the real trick, here. Once dormant content has been identified, we want it out of our
expensive SharePoint storage—but we don’t want to give up easy access to it. When I say
accessible, 1 don’t just mean, “we can get to it if someone goes and finds the right tape.” I
want my users to continue to be able to search for the content right within SharePoint—I
just don’t want the content to be actually in SharePoint right then.

Utilizing Existing Tiered Storage Infrastructure

[also don’t want to have to buy a lot of expensive, task-specific storage. After all, this is
dormant content—stuff I'd really rather just get rid of, but can’t quite do so for some
reason. [deally, content removed from SharePoint could perhaps per compressed and even
de-duplicated, so that it takes up a lot less space than it used to. Of course, I still want
people to be able to get to it right through SharePoint, so [don’t necessarily want the data
written to offline storage that will require IT intervention to bring back online.

Techniques and Concerns for SharePoint Content Lifecycle

Management
The basic way to accomplish this is as follows:

¢ Identify, preferably through some kind of automated business rules, data that is
considered dormant.

e Remove that data from SharePoint—but leave a “stub” behind, so that the data can
still be found. This won’t completely free up all the space in the SharePoint
database—but it will reduce the amount of database space by perhaps 95-98%,
since I'm removing the actual content and just leaving the pointer records behind.

Realtime 61

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

e Copy that data to some kind of online or near-line compressed, de-duplicated data
store. If happen to have something like an EMC Centera storage system hanging
around, that'd be perfect, but [might also want to push it to cloud-based storage, a
network file server, or some other kind of file system. I definitely don’t want the
dormant data going into SQL Server, though. Encryption might be nice, too, since
some of that data is bound to be sensitive.

e Users can still “see” the content in SharePoint—but it’s not entirely there. So if they
try to access it, [might want to just prevent them from doing so unless they have a
specific permission set. If they do, then [want the content to be invisibly “re-
hydrated” from storage. I'm actually of two minds about how I might want that re-
hydration to happen, and I'll discuss them both in a bit.

In some cases, [might even want a specific area in SharePoint—perhaps a Web part—that I
can use to provide specific users with easier access to archived data. Figure 4.1 shows an
example, where a user might want to explicitly search through archived data using
keywords, metadata, and so forth.

SrArchivelrowser

Aschive Search
Scope: hitpVadminsirator 1 00isies fweFg

Woerd: Hide Advancad Options

MSIching ESULIn. & copsent W matadata

Diate ramge ¥ Today © Yesterday 1 Last days From W Ta m
Samgling & 100 %% Random C Every numiber

SharaFaoint type F Document F lem F Web F List F Folder

File fomnat & Only C Do Not Retum results of the file foomat

Adobe Acrobat POF { p
Adobe Pastscnpt [ps|
Autodesk DWF [dwh) Bl

Pl P -
Lonbent type & Ciply © Do Mot Relum results of the file format [[RTERESESE

ANNOUNG smsant

Cantact

Document | |
Pala Data Ophans |l:|":||-.- j Mlade
Built In Matadata Customized MetaData
Fad eEnEaT W Fisls = T Wil T5 |
| Author contains '_'l
| Last Modfier |:l.-'||:1||':- ﬂ
Title comtaing =]

Has Attachment |any format =)

Attachmert Mame | contains 7|

Created Time = it |
Lzt Moddad Time = mm
Yarsion contains j

Check-In Comment| contains :l

Locatior | conLaing ﬂ

Lammr

Figure 4.1: Searching archived data through a Web part.

There are, of course, a few tricks into making this do everything I want.
|

Realtime 62

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
___|

“Dehydrating” and “Re-Hydrating” Data

There’s really two phases to archiving: What I'll call dehydrating the data, and then the later
re-hydrating of that data. Here’s how I think the dehydrating part should work: Having
identified dormant content (based on business rules, which I'll get to in a moment), the
archiving solution (shown as the “Archiver” in Figure 4.2) actually identifies that content in
the SQL Server database, or by talking to SharePoint. It then moves the file portion of the
content—the BLOB—out of the SQL Server database, leaving behind what I call the header
record for that data. Vendors tend to call that a stub; it’s the bit in the database that
contains the file’s name, type, metadata, permissions, and so forth. It’s actually quite tiny
compared to the file itself—perhaps a few kilobytes in most cases. So SharePoint still thinks
the content exists in the database—and it does, just not the content part of the content, if
you follow me.

Figure 4.2: Dehydrating data.

When it comes to the re-hydration, [said [was of two minds, and I am. Figure 4.3 shows the
first way I think this could happen: When someone accesses a piece of content in
SharePoint, the archiver transparently copies the file data back into the SQL Server
database.

Realtime 63

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones

ENNNNN NN
EENEEE R
o bk b s b el e

Figure 4.3: Rehydrating data.

That’s a perfectly valid technique, but I suspect some vendors will approach the problem a
bit differently. Having already implemented BLOB offloading, why not just let the BLOBs
stay offloaded? In other words, why load the content back into SQL Server—where it might
not be used again for years and would just need to be archived again—when you could
invisibly provide access to it without moving it? N Figure 4.4, I illustrate how access to the
file might be granted through SQL Server, using BLOB offloading as I've discussed in
previous chapters, without actually putting the file data back into SQL Server.

Realtime 64

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones

Figure 4.4: Accessing file contents without restoring to SQL Server.

Both approaches have their pros and cons, and it’s possible that some solution vendors
might even offer both approaches as options. Whatever route you choose, I think the most
important thing is that the process be as invisible as possible to your end users. | don’t
mean transparent, because that implies your users are looking “through” something. This
process needs to happen magically on the back-end, without your users being any the
wiser. That means the recovery process has to be fast—on the order a gigabyte a minute or
so, which is a speed that will seem pretty swift to an average network user.

Business Rules

As I've mentioned, we don’t want to have to manually specify what data gets archived. I
might want to set rules based on last access time or last modification time, file size, or even
metadata. In fact, if I could start convincing my users to apply metadata to help categorize
data, that would be an excellent way of identifying items that have unique recovery
requirements, like financial data, tax information, and so on. Since I'm not sure if I'll be able
to teach them that, I'd like the flexibility to specify less user-reliant rules based on dates
and sizes, file types, and so on. Figure 4.5 shows how you might specify some of these rules.

Realtime 65

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

Scope BEEE Fisn riame 5 Sie vchis piar # Saved pians

FarmiFarm(Pa =
F arm Farmi PARADIGU SHARE - SEEMREAG A

igent Group |DEFAULT GROUP FOR. - | Sstings SRR Scope Fiter
= Ky FarmPARADIGU SHARERONT_CONFIG
= B o Sile Colleciion Document Hame
s Accessed Tima R
IHsamed Tims e
List
Created Time o,
; lem
o Crane
] (C e Version
- R Lagill B
- - -
HE Caencs M Document Sce KB
B Lo
== Document Version How Long To Keep Stub Days
Aftachment Column [—

Figure 4.5: Setting business rules for archiving.

[also want to be able to preview what my business rules are about to archive, so that I'm
not accidentally archiving everything out of SharePoint just because I mistyped a rule
criterion or something.

Caution: Sticking with Official APIs

[want to offer a brief word of caution, here: Stick with solutions that use official, published
Microsoft application programming interfaces (APIs) for SharePoint. Here’s a story from
my own experience about the dangers in not doing so:

| worked for a company that had implemented a third-party SharePoint archival
solution. This was some time ago, before a lot of public APIs were available to
help with this, and so the solution vendor was basically jumping into the
database directly, wedging their own code into SharePoint, and so on. This
caused a few problems in the long run.

First, when a new version of SharePoint came out, we couldn’t upgrade until our
solution vendor had upgraded their bits, so they were effectively hacking
SharePoint to accomplish their tasks.

Second, when Microsoft finally did release public APIs, they also shut down the
back-door access that our solution had been relying on. Our particular vendor
took a long time rewriting to use the new APIs, which meant we waited a long
time for our SharePoint upgrade.

Realtime 66

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
___|

When Microsoft does decide to implement official APIs for something, they sometimes
leave “back doors” in place for a version or two, deprecating them and hoping vendors get
the message and rewrite their code. Other times, Microsoft just shuts off the unofficial
access, especially if it’s something they’ve seen or experienced other problems with. The
moral here is that archiving can be accomplished through published, official, supported
APIs—and you should only consider solutions that use those APlIs.

Permissions on Archived Data

[want my archived data to maintain exactly the same permissions that it had in SharePoint.
If I have to manage an additional set of permissions for archived items, I'll go nuts—there
are already too many places my IT team has to manage permissions!

This means that when people search for content, they should see archived content that they
have permission to, and they shouldn’t suddenly gain access to new content just because it’s
been archived. This should actually be pretty easy for a solution to pull off: Remember that
a stub of the content is staying in the SharePoint database. That stub is where permissions
get applied; all we're doing is archiving the large content associated with that stub. Figure
4.6 shows what I'm talking about: The permissions live in SharePoint, and the archival
solution should only permit access to content when that access comes through SharePoint,
helping to ensure that SharePoint remains “in charge” of security of that content.

i
5
|
-
i
-0
|
_B

Figure 4.6: Maintaining permissions on dehydrated content.

| {Eﬂ‘al ti me 67

publishers

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

I'll say this, though: When your archive storage is a file server, there are going to be other
permissions involved. A Windows file server doesn’t do “no permissions,” and they don’t do
“delegated permissions” either. So in that case, the best you can hope for—and this is
certainly sufficient—is one of these two approaches:

e The files on the storage system are permissioned in such a way that only the archive
solution’s service account can access them. This effectively locks everyone else out,
and the archive solution only provides access to the file via SharePoint—which
respects its own permissions.

e The archive solution actually synchronizes, in some fashion, SharePoint’s
permissions onto the archived files. That’s certainly a valid approach, too, since it
keeps SharePoint “in charge.”

Many archive solutions store files in such a compressed and encrypted format that
accessing them directly from the archival storage isn’t feasible; you don’t need to worry as
much about permissions when the file itself is unusable. You should, however, spend some
time understanding how a potential solution handles this security and permissions
situation, so that you’'re comfortable that the approach you’re buying will work for your
organization.

More Shopping List Items

There are a few other capabilities that are more easily explained, that you should definitely
keep in mind when you’re shopping for SharePoint archival solutions. You might not need
every single one of these, but the ones you do need, you don’t want to overlook:

¢ Flexibility. You want to be able to archive anything, from a single item, to a list, to a
library, to all items of a specific type, all the way to an entire site.

e End-User Access. Hey, let’s let our users—those we trust, of course—get in on the
act. If they can identify something as dormant, let them do so, and our solution
should archive it immediately.

¢ Any archive endpoint. You really want a system that isn’t going to lock you into a
specific kind of storage. Yes, if you're an EMC customer, you want to use your EMC
solution—but if you're not, maybe a simple file server is your archival choice. You
should get compression and encryption either way, but be prepared for things like
document de-duplication to only come with higher-end storage systems.

e Archive-specific permissions. Despite what I said earlier, [do want some specific
permissions to the archiving system. I want to be able to decide who can view and
restore archived data, and perhaps who is allowed to archive data and mark it as
dormant.

Realtime 68

Intelligently Reducing SharePoint Costs through Storage Optimization Don Jones
__|

¢ Direct access to archived data. When you archive an entire list, library, or site,
there’s nothing left in SharePoint for people to search for—no stubs, in other words.
So an archive solution still has to provide some dedicated retrieval interface, and
that will often involve actually re-hydrating content back into the production
database so that SharePoint can “see” it again. Look for:

0 A solution that provides a SharePoint-integrated interface for retrieving
content, rather than forcing users to turn to some proprietary tool.

0 A solution that provides full fidelity for restored content—including content,
metadata, permissions, version history, and so on. You don’t want to lose a
thing if you choose to bring something back from dormancy.

¢ Full SharePoint integration. An archival solution should work whether users are
accessing content through the SharePoint Web Front-End, or via Office, or via
anything else that connects through SharePoint.

¢ Reporting. Solutions need to provide some kind of management reporting,
including information on who is using the archive, what data is being accessed, and
So on.

You'll doubtless have some requirements of your own, and it’s a good idea to document
those. Make up an “evaluation checklist” as you start to look at solutions, and keep track
not only of which potential solutions meet your requirements, but how they meet those
requirements, so that you can select the solution that will do the best job for your business
in the long run.

Conclusion

There you have it: Some modern ideas for improving and optimizing SharePoint storage,
for getting more content into SharePoint without bloating the database, and making
SharePoint an overall more-useful part of your enterprise. | hope you’ve found these ideas
useful, and that you're ready to start researching solutions that can give you these
capabilities in your own SharePoint environment.

Realtime 69

	Introduction to Realtime Publishers
	Chapter 1: The Problem with SharePoint Storage
	The SharePoint Vision: Everything, in One Place
	The SharePoint Content Repository: It’s Just a Database
	Specific Problems with Specific Kinds of Content
	Large Content Items
	Shared Folders and Media Files
	Dormant or Archived Content

	SharePoint Storage Technical Deep Dive
	How SQL Server Stores Data
	How Windows Stores Data
	SharePoint: All About the BLOBs
	Why BLOBs Are Bad for Databases
	Why We Put BLOBs into SharePoint

	Goals for Content
	Location-Unaware
	Alert-Enabled
	Metadata- and Tagging-Enabled
	Workflow-Enabled
	Version-Controlled
	Secured
	Indexed and Searchable
	Minimal Database Impact
	Minimal WFE Impact
	Minimal Migration
	Transparent to Users

	Coming Up Next
	Chapter 2: Optimizing SharePoint Storage for Large Content Items
	What Is “Large Content?”
	Pros and Cons of Large Content in SharePoint
	Everything in One Place
	Negative Database Impact

	Goals for Large Content in SharePoint
	Remove the Data from the Database
	Keep the Metadata in the Database
	Keep the Content Searchable
	Keep the Content Secured
	Keep the Content Versioned, Alerted, Workflowed, Etc.
	Extra Features

	The Solution: Move the BLOBs
	EBS
	How It Works
	Pros
	Cons

	RBS
	How It Works
	Pros
	Cons

	Third-Party Approaches
	How It Works
	Added Flexibility

	Coming Up Next
	Chapter 3: Optimizing SharePoint Storage for External or Legacy Content
	What Is “External Content?”
	Databases
	Files in Shared Folders
	Media Files
	Files from the Cloud
	Today: Data Chaos

	Traditional Approaches for Getting External Content into SharePoint
	Integration
	The BDC
	Business Connectivity Services or “Two-Way BDC”

	Migration
	How It’s Done
	Benefits of Migrating Content
	Downsides of Migrating Content

	Goals for External Content
	Keeping the Content External
	While Surfacing the Content in SharePoint
	And Making External Content a Full SharePoint Citizen

	Creative Approaches for Getting External Content into SharePoint
	Content “Connectors”
	Special Considerations for Media Files

	How Do You Do It?
	Coming Up Next
	Chapter 4: Optimizing SharePoint Storage for Dormant and Archived Content
	When Content Goes “Dormant”
	Entire Sites Are No Longer Needed
	Projects End
	Older Versions No Longer Actively Needed
	Content Is Phased Out

	Business Concerns for Dormant Content
	Storage Utilization
	Regulatory and Industry Compliance
	Retention and Archiving Policies

	The “Archive & Delete” Approach
	Techniques
	Pros and Cons

	Goals for Dormant Content
	Reduce SharePoint Database Utilization
	Keeping Dormant Content Accessible
	Utilizing Existing Tiered Storage Infrastructure

	Techniques and Concerns for SharePoint Content Lifecycle Management
	“Dehydrating” and “Re-Hydrating” Data
	Business Rules
	Caution: Sticking with Official APIs
	Permissions on Archived Data
	More Shopping List Items

	Conclusion

